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0.1 Introduction

Computer Aided Geometric Design(CAGD) became an important tool for geomet-

rical modelling. Computer graphics, high quality fonts and automobile-industry

are examples of some of the fields which applies this tool. Geometric modeling is

a branch of computational geometry. It deals with the construction and represen-

tation of the curves, surface, or volumes. Applications are includes ship building,

air craft and automobile industries as well as architectural design. Bezier B-spline

and subdivision curves are very important in geometric modeling and are very

useful for generating smooth curves and surfaces. With the help of subdivision

scheme we can generate/design/ model car, ship industrial equipment cloth and

cloth modeling etc. In geometrical modelling we often need to generate both triv-

ial and most complicated smooth shapes which are created with the knowledge of

mathematics and descriptive geometry.

0.2 Syllabus

Implicit and parametric forms of curve and surfaces, power basis form of curve,

Bezier curve, rational Bezier curves, tensor product surfaces, introduction of B-

Spline basis functions,B-spline basis function, derivatives of B-spline basis func-

tion, computational algorithms, introduction of B-Spline curve and surfaces,B-spline

curve, derivatives of B-spline curve, B-spline surfaces, derivatives of B-spline sur-

faces, introduction of rational B-Spline curve and surfaces,NURBS curves, deriva-

tives of NURBS curves, NURBS surfaces, derivatives of NURBS surfaces, introduc-

tion of approximation and interpolation, Lagrange form, Newton form, Hermite

interpolation, Piecewise cubic Hermite interpolation, approximation, least squares

fitting.

0.2.1 Recommended Books

• Gerald Farin, Curves and Surfaces for CAGD: A Practical Guide, 5th Edition,

Amazon (2002)
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• G. Farin, J. Hoschek and M. Sookim, Hand Book of Computer Aided Geo-

metric Design, Elsevier Science (2002)

• David F. Rogers, Procedural Elements for Computer Graphics. McGraw-Hill

Companies, Inc.(1998).
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Chapter 1
Representations of the curves

Graphical representation of functions is called curves. There are three types of

representations of curves.

• Explicit representation

• Implicit representation

• Parametric representation

Definition 1.0.1. Explicit representation:

In this representation, we represent the one variable in terms of another variable

using a single valued function i.e. y = f(x). Examples of explicit curves include:

A curve: f(x) = 3x+ 6,

An upper semi-circle: f(x) = +
√
1− x2,

A lower semi-circle: f(x) = −
√
1− x2.

It is difficult to represent closed shapes by using explicit representation.

Definition 1.0.2. Implicit representation:

In general, every implicit curve is defined by an equation of the form f(x, y) = 0,

1
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for some function f of two variables. Examples of implicit curves include:

A circle: f(x, y) = x2 + y2 − 1,

An ellipse f(x, y) = x2/a2 + y2/b2 − 1.

A parabola f(x, y) = y2 − 4ax

Conic section f(x, y) = ax2 + bxy + cy2 + dx+ ey + f.

where a, b, c, d, e and f are real constants. The essential disadvantage of an implicit

curve is the lack of an easy possibility to calculate single point which is necessary

for visualization of an implicit curve.

Definition 1.0.3. Parametric representation:

If the variables x and y are represented as a function of some other independent

variable (say t) where t is parameter. It may be a time or an angle. Then such a

representation is said to be parametric representation. It is generally denoted as

Q(t) = (x(t), y(t)).

There are two categories of curves that can be represented parametrically: analytic

curves and synthetic curves.

Analytic curves are defined as those that can be described by analytic equations

such as lines, circles, and conics. Examples of analytic curves include:

A line: Q(t) = (at+ b, ct+ d),

A circle: Q(t) = (r cos(t), r sin(t)),

An ellipse: Q(t) = (a cos(t), b sin(t)),

A parabola: Q(t) = (at2, 2at),

where a, b, c, d, r are constants and t belongs to some interval.

Synthetic curves are the ones that are described by a set of data points (control

points) such as Bezier and B-splines curves (will be discussed later). The need for

synthetic curves in design arises on two occasions: when a curve is represented

by a collection of measured data points and when an existing curve must change

to meet new design requirements. Analytic curves are usually not sufficient to
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meet geometric design requirements of mechanical parts. Synthetic curves pro-

vide designers with greater flexibility and control of a curve shape by changing the

positions of the control points. Products such as car bodies, ship hulls, airplane

fuselage and wings, propeller blades, shoe insoles, and bottles are a few examples

that require free-form, or synthetic, curves and surfaces.

1.1 Tangent and normal vectors

A straight line that touches a curve at a point, but if extended does not cross it at

that point is called tangent. Formally, it is a line which intersects a differentiable

curve at a point where the slope of the curve equals the slope of the line. A normal

vector is perpendicular to the tangent. A tangent vector rotated by 900, is called

normal vector. We find normal vector by multiplying tangent vector with a 900

degree rotation matrix

Rotation matrix at 900 =

 cos(π
2
) − sin(π

2
)

sin(π
2
) cos(π

2
)

 =

 0 −1

1 0

 .

If Q(t) = (x(t), y(t)) is parametric curve then tangent T (t) and normal N(t) vectors

are

T (t) = (x′(t), y′(t)).

N(t) =

 0 −1

1 0

 x′(t)

y′(t)

 =

 −y′(t)

x′(t)

 .

The equation of tangent line at t = t0 is

LT (t) = Q(t0) + T (t0)t,

while the equation of normal line at t = t0 is

LN(t) = Q(t0) +N(t0)t.
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Example 1.1.1. Find the tangent and normal lines of the parametric form of an

ellipse at t0 = π.

Solution. Since the parametric form of an ellipse is Q(t) = (a cos(t), b sin(t)), so

T (t) =
d

dt
Q(t) = Q′(t) = (−a sin(t), b cos(t)),

N(t) =

 0 −1

1 0

 −a sin(t)

b cos(t)

 =

 −b cos(t)

−a sin(t)

 .

Or

N(t) =
(

−b cos(t), −a sin(t)
)
.

Therefore the tangent line

LT (t) = Q(t◦) + T (t◦)t, t◦ = π

= (a cos(π), b sin(π)) + (−a sin(π), b cos(π))t.

This implies

LT (t) = (−a, 0) + (0, b)t = (−a, bt),

and the normal line

LN(t) = Q(t0) +N(t◦)t, t0 = π

= (a cos(π), b sin(π)) + (−b cos(π),−a sin(π))t.

This implies

LN(t) = (−a, 0) + (b, 0)t = (−a+ bt, 0).

�
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Example 1.1.2. Find the tangent and normal lines of the parametric form of circle

at t0 = π.

Solution. Since the parametric form of circle is Q(t) = (r cos(t), r sin(t)), so

T (t) = Q′(t) = (−r sin(t), r cos(t)),

N(t) =

 0 −1

1 0

 −r sin(t)

r cos(t)

 =

 −r cos(t)

−r sin(t)

 .

Or

N(t) = (−r cos(t),−r sin(t)).

Therefore the tangent line

LT (t) = Q(t0) + T (t0)t, t0 = π

= (r cos(π), r sin(π)) + (−r sin(π),−r cos(π))t.

This implies

LT (t) = (−r, 0) + (0,−r)t = (−r,−rt),

and the normal line

LN(t) = Q(t◦) +N(t◦)t t◦ = π

= (r cos(π), r sin(π)) + (−r cos(π),−r sin(π))t

= (−r, 0) + (r, 0)t

= (−r + rt, 0).

�
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1.2 Parametric and geometric continuity

Mathematically, synthetic and parametric curves represent a curve-fitting problem

to construct a smooth curve that passes through given data points. There are two

categories of continuities: geometric continuity and parametric continuity.

Definition 1.2.1. Parametric continuity is achieved by matching the parametric

derivatives of adjoining curves at their common boundary.

• Zero-order parametric continuity, or C0 continuity, yields a position continu-

ous curve. That is curves are joined.

• First-order parametric continuity, or C1 continuity, imply slope continuous

curves. It means first derivatives are equal at joint.

• Second-order parametric continuity, or C2 continuity, imply curvature con-

tinuous curves. It means first and second derivatives are equal at joint.

• nth-order parametric continuity, or Cn continuity, means up to nth derivative

are equal at joint.

Definition 1.2.2. In geometric continuity, we only require parametric derivatives

of the two sections to be proportional to each other at their common boundary.

• Zero-order geometric continuity, or G0 continuity, is the same as zero-order

parametric continuity. That is, the two curves sections must have the same

coordinate position at the boundary point. In other words, curves are joined.

• First order geometric continuity, or G1 continuity, means that the parametric

first derivatives are proportional at the intersection on two successive sec-

tions. If we denote the parametric position on the curve as f(t), the direction

of the tangent vector f ′(t), but not necessarily its magnitude, will be the same

for two successive curve sections at their joining point under G1 continuity.

In otherworld, first derivatives are proportional at the join point.

• Second-order geometric continuity, or G2 continuity, means that both the first

and second parametric derivatives of the two curve sections are proportional
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at their boundary. Under G2 continuity, curvatures of two curve sections will

match at the joining position. In other words, first and second derivatives are

proportional at join point.

• Similarly, nth-order geometric continuity, or Gn continuity, means up to nth

derivatives are proportional at join point.

A parametric continuity of order n implies geometric continuity of order n, but

not vice-versa. A curve generated with geometric continuity conditions is similar

to one generated with parametric continuity, but with slight differences in curve

shape. With geometric continuity, the curve is pulled toward the section with the

greater tangent vector.

The geometric continuity requires the geometry to be continuous, while parametric

continuity requires that the underlying parameterizations be continuous as well.

In other words, The parametric continuity indicates smoothness of motion. For

examples, while deriving on the car, jumps on the road, is example of parametric

continuity that is the parametric continuity studies that how much smooth is the

road. While geometric continuity indicates visual smoothness of the curve. For

example, movie screen.

Mathematically: Let f(t) be any piecewise function defined over the interval [a, b]

and c is any point of [a, b] then f(t) will be

• C0 continuous if f(c−) = f(c+),

• C1 continuous if f(c−) = f(c+) and f ′(c−) = f ′(c+),

• C2 continuous if f(c−) = f(c+), f ′(c−) = f ′(c+) and f ′′(c−) = f ′′(c+).

• G0 continuous if f(c−) = f(c+),

• G1 continuous if f(c−) = f(c+) and f ′(c−) = k1f
′(c+),

• G2 continuous if f(c−) = f(c+), f ′(c−) = k1f
′(c+) and f ′′(c−) = k2f

′′(c+),

where k1, k2 are constants. Similarly, higher order continuities can be defined.
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Example 1.2.1. Consider a camera that moves along an elliptic trajectory, but with

an altered parametric representation: At t = a the camera’s speed suddenly in-

creased by a factor of three 3. The equation describing the motion is

f(t) =

 (w cos(t), h sin(t)), if 0 6 t 6 a,

(w cos(3t− 2a), h sin(3t− 2a)), if a 6 t 6 2(π+a)
3

.

Then discuss parametric and geometric continuity upto second order.

Solution. Since f is piecewise function so continuity will be discussed at the joint

i.e. at point a. Since

f(a−) = (w cos(a), h sin(a))

f(a+) = (w cos(3a− 2a), h sin(3a− 2a)) = (w cos(a), h sin(a)).

Therefore f(a−) = f(a+). Hence f is C0 and G0-continuous at point a. Since cos and

sin functions are continuous over the entire domain so f is C0 and G0-continuous

over the entire domain. Since

f ′(t) =

 (−w sin(t), h cos(t)), if 0 6 t 6 a,

(−3w sin(3t− 2a), 3h cos(3t− 2a)), if a 6 t 6 2(π+a)
3

.

Therefore

f ′(a−) = (−w sin(a), h cos(a)),

f ′(a+) = (−3w sin(3a− 2a), 3h cos(3a− 2a)) = 3(−w sin(a), h cos(a)).

So f ′(a−) ̸= f ′(a+). Hence f is not C1 continuous at point a. But as

f ′(a+) = 3(−w sin(a), h cos(a)) = 3f ′(a−).

So f is G1 continuous at point a as well as on the entire domain. Now since

f ′′(t) =

 (−w cos(t), −h sin(t)), if 0 6 t 6 a,

(−9w cos(3t− 2a), −9h sin(3t− 2a)), if a 6 t 6 2(π+a)
3

.
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This implies

f ′′(a−) = (−w cos(a), −h sin(a)),

f ′′(a+) = (−9w cos(3a− 2a), −9h sin(3a− 2a))

= 9(−w cos(a), −h sin(a)).

As f ′′(a+) = 9f ′′(a−), then f is G2 continuous at point a as well as on the entire

domain. �

1.3 Polynomials

Explicity the nth degree polynomial can be defined as

p(t) = ant
n + an−1t

n−1 + · · ·+ a2t
2 + a1t+ a0,

where an, an−1, · · · , a2, a1, a0 are real coefficients and all the powers are non-negative

integers. This polynomial is represented by the linear combination of certain ele-

mentary polynomial 1, t1, t2, · · · , tn. The order of polynomial is one more than the

degree of polynomial. That is if the degree of polynomial is n then its order is n+1

(total number of coefficients).

The set of polynomials of degree less than or equal to n forms a vector space and

the set of elementary polynomials {1, t1, t2, · · · , tn} forms a basis for this vector s-

pace.

A cubic polynomial is the minimum-order polynomial that can guarantee the gen-

eration of C0, C1 and C2 curves. The higher-order polynomials are not common-

ly used in Computer Aided Design (CAD) systems because they tend to oscillate

about control points, are computationally inconvenient, and are uneconomical of

storing curve representations in the computer.

The parametric polynomial of degree 1 is defined as p(t) = (at + b, ct + d), where

a, b, c and d are constants. Of course the shape of this polynomial is a straight line.

The parametric polynomial of degree 2 is defined as p(t) = (at2+bt+c, dt2+et+f),

where a, b, c, d, e and f are constants and (a, d ̸= 0). The shape of this polynomial
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is parabola. Similarly, one can define higher degree parametric polynomials.

1.3.1 Implicit and rational polynomials of degree 2

The well known implicit 2nd degree polynomial to generate conic section is f(x, y) =

Ax2 +Bxy + Cy2 +Dx+ Ey + F , where A,B,C,D,E, F , are real constants. If

• AC −B2 > 0, then f(x, y) represents ellipse,

• AC −B2 = 0, then f(x, y) represents parabola,

• AC −B2 < 0, then f(x, y) represents hyperbola.

Unfortunately, there do not exist 2nd degree parametric polynomial to generate

conic section. But luckily, there exists a 2nd degree rational parametric polynomial

to represent conic section defined in the form of ratio of two polynomials.

p(t) =
p◦(1− t)2 + 2p1wt(1− t) + p2t

2

(1− t)2 + 2wt(1− t) + t2
, t ∈ [0, 1],

where w is a parameter, p0(x0, y0), p1(x1, y1), p2(x2, y2) are any three points in the

plane. These points are known as control points because these points control the

shape of curve. The above polynomial can be written as p(t) = (x(t), y(t)), that is

p(t) =

(
x0(1− t)2 + 2x1wt(1− t) + x2t

2

(1− t)2 + 2wt(1− t) + t2
,

y0(1− t)2 + 2y1wt(1− t) + y2t
2

(1− t)2 + 2wt(1− t) + t2

)
.

It has nice properties:

• when t = 0, we can get initial point p(0) = (x0, y0) = p0,

• when t = 1, we can get final point p(1) = (x2, y2) = p2,

• when 0 6 t 6 1, if

w <1, then p(t) represents ellipse,

w=1, then p(t) represents parabola,

w>1, then p(t) represents hyperbola.
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1.4 Bernstein polynomial

Bernstein polynomial was introduced by Sergei Natanovich Bernstein. Sometimes

Romanized as Bernshtein (5 March 1880-26 October 1968) was a Russian and Soviet

mathematician. Bernstein polynomial of degree n, order n+ 1 is defined by

Bi,n(t) =

(
n

i

)
ti(1− t)n−i, t ∈ [0, 1], (1.1)

where i = 0, 1, . . . , n.

• Bernstein polynomials of degree n = 1, for i = 0, 1, are

B0,1(t) =

(
1

0

)
t0(1− t)1−0 = 1− t,

B1,1(t) =

(
1

1

)
t1(1− t)1−1 = t. (1.2)

• Bernstein polynomials of degree n = 2, for i = 0, 1, 2, are

B0,2(t) =

(
2

0

)
t0(1− t)2−0 = (1− t)2,

B1,2(t) =

(
2

1

)
t1(1− t)2−1 = 2t(1− t),

B2,2(t) =

(
2

2

)
t2(1− t)2−2 = t2. (1.3)

• Bernstein polynomials of degree n = 3, for i = 0, 1, 2, 3, are

B0,3(t) =

(
3

0

)
t0(1− t)3−0 = (1− t)3,

B1,3(t) =

(
3

1

)
t1(1− t)3−1 = 3t(1− t)2,

B2,3(t) =

(
3

2

)
t2(1− t)3−2 = 3t2(1− t),

B3,3(t) =

(
3

2

)
t3(1− t)3−3 = t3. (1.4)

1.4.1 Properties of Bernstein polynomials

Some of the important properties of Bernstein polynomials are given below
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Property 1.4.1. B0,0(t) = 1.

Property 1.4.2. Bi,n(t) = 0 when i < 0 and i > n.

Proof. First consider the case when i < 0, that is replace i by −i

Bi,n(t) =

(
n

−i

)
t−i(1− t)n+i.

Since
(
n
−i

)
= 0, then Bi,n(t) = 0. Now consider the case when i > n. Since

(
n
i

)
= 0,

for i > n, so

Bi,n(t) =

(
n

i

)
ti(1− t)n−i = 0.

This completes the proof.

Property 1.4.3.

Bi,n(0) =

 1, if i = 0,

0, if i ̸= 0.
(1.5)

Proof. Consider the case when i = 0, that is

B0,n(0) =

(
n

0

)
00(1− 0)n−0.

Since, 00 = 1, therefore

B0,n(0) =

(
n

0

)
00(1)n = 1× 1× 1 = 1.

Now consider the case when i ̸= 0

Bi,n(0) =

(
n

i

)
0i(1)n−i.

Since 0i = 0 for i ̸= 0, therefore Bi,n(0) = 0.
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Property 1.4.4.

Bi,n(1) =

 1, if i = n,

0, if i = 0, 1, 2, . . . , n− 1.
(1.6)

Proof. Consider the case when i = n, that is

Bn,n(1) =

(
n

n

)
1n(1− 1)n−n.

Since, 00 = 1, therefore

Bn,n(1) =

(
n

n

)
1n(0)0 = 1× 1× 1 = 1.

Now consider the case when i = 0, 1, 2, . . . , n− 1.

Bi,n(1) =

(
n

i

)
1i(0)n−i.

Since n− i ̸= 0, for i = 0, 1, 2, . . . , n− 1, then 0n−i = 0, therefore Bi,n(1) = 0.

Property 1.4.5. Bernstein polynomial of degree n is the linear combination of the Bernstein

polynomial of degree n− 1.

Bi,n(t) = (1− t)Bi,n−1(t) + tBi−1,n−1(t), i = 1, 2, 3, · · · , n.

Proof. Consider (1− t)Bi,n−1(t) + tBi−1,n−1(t)

= (1− t)

(
n− 1

i

)
ti(1− t)n−1−i + t

(
n− 1

i− 1

)
ti−1(1− t)n−1−(i−1)

= (1− t)

(
n− 1

i

)
ti(1− t)n−1−i + t

(
n− 1

i− 1

)
ti−1(1− t)n−i

=

(
n− 1

i

)
ti(1− t)n−i +

(
n− 1

i− 1

)
ti(1− t)n−i

=

[(
n− 1

i

)
+

(
n− 1

i− 1

)]
ti(1− t)n−i

=

(
n

i

)
ti(1− t)n−i

= Bi,n(t).
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This completes the proof.

Property 1.4.6. Bernstein polynomials form a partition of unity i.e.
∑n

i=1 Bi,n(t) = 1.

Proof. Since 1 = (1− t) + t, therefore 1n = [(1− t) + t]n . By Binomial theorem

[(1− t) + t]n =

(
n

0

)
t0(1− t)n−0 +

(
n

1

)
t1(1− t)n−1 + . . .

+

(
n

n

)
tn(1− t)n−n.

This implies

[(1− t) + t]n = B0,n(t) +B1,n(t) + · · ·+Bn,n(t).

This again implies

1 = 1n = [(1− t) + t]n =
n∑

i=0

Bi,n(t). (1.7)

This completes the proof.

Property 1.4.7. The derivative of Bernstein polynomial of degree n is linear combination

of n− 1 degree Bernstein polynomial i.e.

d

dt
Bi,n(t) = n [Bi−1,n−1(t)−Bi,n−1(t)] , for 0 < i < n. (1.8)

Proof. Consider d
dt
Bi,n(t)

=
d

dt

[(
n

i

)
ti(1− t)n−i

]
=

(
n

i

)[
iti−1(1− t)n−i − ti(n− i)(1− t)n−i−1

]
=

(
n

i

)
iti−1(1− t)n−i −

(
n

i

)
ti(n− i)(1− t)n−i−1.
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This implies

=
n!

i!(n− i)!
iti−1(1− t)n−i − n!

i!(n− i)!
ti(n− i)(1− t)n−i−1

=
n(n− 1)!

i(i− 1)!(n− 1− (i− 1))!
iti−1(1− t)n−i

− n(n− 1)!

i!(n− i)(n− i− 1)!
ti(n− i)(1− t)n−i−1

= n

(
n− 1

i− 1

)
ti−1(1− t)n−1 − n

(
n− 1

i

)
ti(1− t)n−i−1.

this again implies

d

dt
Bi,n(t) = n [Bi−1,n−1(t)−Bi,n−1(t)] .

This completes the proof.

Property 1.4.8. Bernstein polynomials are all non-negative, for 0 6 t 6 1.

Proof. By definition

Bi,n =

(
n

i

)
ti(1− t)n−i.

Since t > 0 and (1− t) > 0 for 0 6 t 6 1, therefore Bi,n > 0

1.4.2 Degree raising in Bernstein polynomial

Any of the lower degree Bernstein polynomial of degree less than n can be ex-

pressed as a linear combination of Bernstein polynomial of degree n.

Theorem 1.4.9. Prove that any Bernstein polynomial of degree n − 1 can be written as a

linear combination of degree n.

Proof. Consider the Bernstein polynomial of degree n

Bi,n(t) = 1Bi,n(t) = (1− t+ t)Bi,n(t)

= (1− t)Bi,n(t) + tBi,n(t).
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Consider

tBi,n(t) = t

(
n

i

)
ti(1− t)n−i =

(
n

i

)
ti+1(1− t)(n+1)−(i+1)

=

(
n
i

)(
n+1
i+1

)(n+ 1

i+ 1

)
ti+1(1− t)(n+1)−(i+1).

This implies

tBi,n(t) =

n!
i!(n−i)!

(n+1)!
(i+1)!(n+1)−(i+1)!

Bi+1,n+1(t) =

n!
i!(n−i)!

(n+1)!
(i+1)!(n−i)!

Bi+1,n+1(t).

Again implies

tBi,n(t) =
n!

i!(n− i)!

(i+ 1)!(n− i)!

(n+ 1)!
Bi+1,n+1(t).

Or

tBi,n(t) =
n!

i!(n− i)!

(i+ 1)i!(n− i)!

(n+ 1)n!
Bi+1,n+1(t).

Further implies

tBi,n(t) =

(
i+ 1

n+ 1

)
Bi+1,n+1(t).

Now consider

(1− t)Bi,n(t) = (1− t)

(
n

i

)
ti(1− t)n−i =

(
n

i

)
ti(1− t)n+1−i

=

(
n
i

)(
n+1
i

)(n+ 1

i

)
ti(1− t)n+1−i =

(
n
i

)(
n+1
i

)Bi,n+1(t).

This implies

(1− t)Bi,n(t) =

n!
i!(n−i)!

(n+1)!
i!(n+1−i)!

Bi,n+1 =
n!

i!(n− i)!

i!(n+ 1− i)!

(n+ 1)!
Bi,n+1.
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Again implies

(1− t)Bi,n(t) =
n!

i!(n− i)!

i!(n+ 1− i)(n− i)!

(n+ 1)n!
Bi,n+1 =

n+ 1− i

n+ 1
Bi,n+1.

Further implies

(1− t)Bi,n(t) =

(
1− i

n+ 1

)
Bi,n+1.

Now add both terms

Bi,n(t) = (1− t)Bi,n(t) + tBi,n(t).

=

(
1− i

n+ 1

)
Bi,n+1 +

(
i+ 1

n+ 1

)
Bi+1,n+1(t).

Replace n by n− 1

Bi,n−1(t) =

(
1− i

n

)
Bi,n +

(
i+ 1

n

)
Bi+1,n(t).

This completes the proof

1.4.3 Converting from Bernstein basis to power basis

We know that 1, t, t2, t3, · · · , tn are called power basis or monomials.

Theorem 1.4.10. Prove that every Bernstein polynomial of degree n can be written in

terms of power basis 1, t, t2, t3, · · · , tn.

Proof. Consider an arbitrary Bernstein polynomial

Bk,n(t) =

(
n

k

)
tk(1− t)n−k.

By Binomial theorem

(1− t)n−k =

(
n− k

0

)
(1)n−k(−t)0 +

(
n− k

1

)
(1)n−k−1(−t)1

+

(
n− k

2

)
(1)n−k−2(−t)2 + · · · · · ·+

(
n− k

n− k

)
(1)0(−t)n−k.



18 CHAPTER 1. REPRESENTATIONS OF THE CURVES

This implies

(1− t)n−k =
n−k∑
i=0

(
n− k

i

)
(−1)i(t)i.

So

Bk,n(t) =

(
n

k

)
tk

{
n−k∑
i=0

(
n− k

i

)
(−1)i(t)i

}
.

This implies

Bk,n(t) =
i=n−k∑
i=0

(
n

k

)(
n− k

i

)
(−1)i(t)k+i.

Now replace k + i by i that is replace i by i− k, in other word put i = i− k

Bk,n(t) =
i−k=n−k∑
i−k=0

(
n

k

)(
n− k

i− k

)
(−1)i−k(t)k+(i−k).

Further implies

Bk,n(t) =
i=n∑
i=k

(
n

k

)(
n− k

i− k

)
(−1)i−k(t)i.

Since Bk,n(t) is arbitrary Bernstein polynomial of degree n, therefore every Bern-

stein polynomial of degree n can be written as linear combination of monomials.

This completes the proof.

Example 1.4.1. Let P 3(t) be the set of polynomials of degree ≤ 3 then prove that

the set of power basis {1, t, t2, t3} is the basis of P 3(t).

Solution. Let S = {1, t, t2, t3}, to show that S is the basis of P 3(t), we have to

prove that

• S is linearly independent,

• S generates (i.e. span) P (t). This means every polynomial of degree less than

or equal to 3 can be expressed as the linear combination of 1, t, t2, t3.
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First we prove that S is linearly independent. For this consider the linear combina-

tion of 1, t, t2, t3 and put it as 0 i.e.

a0t
0 + a1t

1 + a2t
2 + a3t

3 = 0,

where a0, a1, a2, a3 are scalars. This can be written as

a0t
0 + a1t

1 + a2t
2 + a3t

3 = 0t0 + 0t1 + 0t2 + 0t3.

Comparing the coefficients of t and constant term, we get a0 = a1 = a2 = a3 = 0.

Since all the scalars are zero so S is linearly independent.

Now prove that S generates P 3(t). Let us take an arbitrary element of P 3(t), i.e.

at0 + bt1 + ct2 + dt3 ∈ P 3(t),

where a, b, c and d are known constants. This element is equal to the linear com-

bination of the elements of S, so S generates P 3(t). In other words, the power

basis {1, t, t2, t3} form a space of polynomials of degree less than or equal to 3. This

completes the proof. �

Similarly, we can prove that the power basis {1, t, t2, t3, . . . tn} form a space of

polynomials of degree less than or equal to n.

Example 1.4.2. Prove that the set of Bernstein polynomials S={B0,3(t), B1,3(t), B2,3(t),

B3,3(t)} of degree three is the basis of a space of polynomials P 3(t) of degree less

than or equal to 3.

Solution. First prove that S is linearly independent, for this take linear combina-

tion of elements of S and set it zero

a0B0,3(t) + a1B1,3(t) + a2B2,3(t) + a3B3,3(t) = 0.

By (1.4), this implies

a0(1− t)3 + a13t(1− t)2 + a23t
2(1− t) + a3t

3 = 0.
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This implies

a0(1− t3 − 3t+ 3t2) + a13t(1 + t2 − 2t) + a2(3t
2 − 3t3) + a3t

3 = 0.

This further implies

(−a0 + 3a1 − 3a2 + a3)t
3 + (3a0 − 6a1 + 3a2)t

2 + (−3a0 + 3a1)t+ a0

= 0t3 + 0t2 + 0t+ 0.

Comparing the coefficients of t3, t2, t and constant term

−a0 + 3a1 − 3a2 + a3 = 0

3a0 − 6a1 + 3a2 = 0

−3a0 + 3a1 = 0

a0 = 0

Solving above system of equations by backwards substitution, we get a0 = a1 =

a2 = a3 = 0. Since all the scalars are zero therefore S is linearly independent. Now

we prove that S generates P 3(t). That is every element of P 3(t) can be written as

the linear combination of the elements of S. Consider the element of P 3(t) i.e.

at3 + bt2 + ct+ d ∈ P 3(t),

where a, b, c and d are known constants. Suppose

at3 + bt2 + ct+ d = a0B0,3(t) + a1B1,3(t) + a2B2,3(t) + a3B3,3(t).

Now find the unknown constants a0, a1, a2 and a3. By (1.4)

at3 + bt2 + ct+ d

= a0(1− t)3 + a13t(1− t)2 + a23t
2(1− t) + a3t

3

= a0(1− t3 − 3t+ 3t2) + a13t(1 + t2 − 2t) + a2(3t
2 − 3t3) + a3t

3.
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= a0(1− t3 − 3t+ 3t2) + a1(3t+ 3t3 − 6t2) + a2(3t
2 − 3t3) + a3t

3

= (−a0 + 3a1 − 3a2 + a3)t
3 + (3a0 − 6a1 + 3a2)t

2 + (−3a0 + 3a1)t+ a0.

Comparing the coefficients of t3, t2, t and constant term

−a0 + 3a1 − 3a2 + a3 = a

3a0 − 6a1 + 3a2 = b

−3a0 + 3a1 = c

a0 = d.

Since a, b, c and d are known constants, therefore a0 = d is known. By backwards

substitutions, we can find other unknowns. Since −3a0+3a1 = c, so by substituting

a0 = d, we get −3d+ 3a1 = c, this implies a1 = (c+ 3d)/3.

Now since

3a0 − 6a1 + 3a2 = b,

so by substituting the values of a0 = d and a1 = (c+ 3d)/3,

3d− 6{(c+ 3d)/3}+ 3a2 = b.

This implies

−3d− 2c+ 3a2 = b.

Again implies

a2 = (b+ 3d+ 2c)/3.

Now since

−a0 + 3a1 − 3a2 + a3 = a.
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By substituting the values of a0 = d, a1 = (c + 3d)/3 and a2 = (b + 2c + 3d)/3, we

get

−d+ 3{(c+ 3d)/3} − 3{(b+ 3d+ 2c)/3}+ a3 = a.

This implies

−d− c− b+ a3 = a.

Again implies

a3 = a+ b+ c+ d.

Hence by substituting the values of a0, a1, a2 and a3, we get

at3 + bt2 + ct+ d = a0B0,3(t) + a1B1,3(t) + a2B2,3(t) + a3B3,3(t)

= {d0}B0,3(t) + {(c+ 3d)/3}B1,3(t)

+{(b+ 3d+ 2c)/3}B2,3(t) + {a+ b+ c+ d}B3,3(t).

This means every elements of P 3(t) is the linear combination of Bernstein polyno-

mials of degree 3. So the set S generates P 3(t). Since S is also linearly independent.

Hence the set of Bernstein polynomials of degree 3 is the basis of a space of poly-

nomials of degree less than or equal to 3. �

1.5 Pascal triangle

When the Binomial coefficient
(
n
i

)
in (1.1) is evaluated for different values of i and

n then it shows the pattern of numbers shown in Table 1.1. This pattern of number

is known as Pascal’s triangle. In western countries they are named after a 17th cen-

tury French mathematician Blaise Pascal, even though they had been described in

China as early as 1303 in "Previous Mirror of the Four Elements" by Chinese math-

ematician Chu Shih-Chieh.

The pattern represents the coefficients found in binomial expansions. For example,
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the expansion of (x+ a)n for different values of n is which reveals Pascal’s triangle

as coefficients of the polynomial terms (see (1.9) and Table 1.1). Alternate method

to build the triangle is: start with "1" at the top, then continue placing numbers be-

low it in a triangular pattern. Each number is the sum of the two numbers directly

above it. It is shown in Table 1.2.

The powers of t and (1− t) in (1.1) appear as shown in Table 1.3 for different values

of i and n. When the two sets of results (i.e. in Table 1.1 and 1.3) are combined, we

get the complete Bernstein polynomial terms shown in Table 1.4.

Table 1.1: Pascal’s triangle

i
n 0 1 2 3 4
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1

(x+ a)0 = 1

(x+ a)1 = 1x+ 1a

(x+ a)2 = 1x2 + 2ax+ 1a2

(x+ a)3 = 1x3 + 3ax2 + 3a2x+ 1a3

(x+ a)4 = 1x4 + 4ax3 + 6a2x2 + 4a3x+ 1a4. (1.9)

Table 1.2: Pascal’s triangle

n/i 0 1 2 3 4

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1
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Table 1.3: Expansion of the terms t and (1− t)

i
n 0 1 2 3 4
1 t (1− t)
2 t2 t(1− t) (1− t)2

3 t3 t2(1− t) t(1− t)2 (1− t)3

4 t4 t3(1− t) t2(1− t)2 t(1− t)3 (1− t)4

Table 1.4: The Bernstein polynomial terms

i
n 0 1 2 3 4
1 1t 1(1− t)
2 1t2 2t(1− t) 1(1− t)2

3 1t3 3t2(1− t) 3t(1− t)2 1(1− t)3

4 1t4 4t3(1− t) 6t2(1− t)2 4t(1− t)3 1(1− t)4

1.6 Be’zier curve

Be’zier curve was developed by Paul de Casteljau in 1959 and independently by

Pierre Be’zier around 1962. Given the set of control points {p0, p1, p2 · · · , pn}, we

can define Be’zeir curve of degree n as

P (t) =
n∑

i=0

piBi,n(t), t ∈ [0, 1] , (1.10)

where Bi,n(t) =
(
n
i

)
ti(1− t)n−i is a Bernstein polynomial of degree n. If pi = (xi, yi)

then (1.10) can be written as

P (t) = (x(t), y(t)) =

(
n∑

i=0

xiBi,n(t),
n∑

i=0

yiBi,n(t)

)
. (1.11)

Example 1.6.1. Find the Be’zeir curve which has control points (2, 2), (1, 1.5), (3.5, 0),

(4, 1).

Solution. Let

x(t) =
3∑

i=0

xiBi,3(t) = x0B0,3(t) + x1B1,3(t) + x2B2,3(t) + x3B3,3(t).

Then by substituting the values of Bernstein polynomials Bi,3(t), for i = 0, 1, 2, 3
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given in (1.4) and using the data points (xi, yi) = (2, 2), (1, 1.5), (3.5, 0), (4, 1), we

get

x(t) = 2(1− t)3 + 1(3t)(1− t)2 + 3.5(3t2(1− t)) + 4t3

= 2(1− t3 − 3t+ 3t2) + 3t(1 + t2 − 2t) + 10.5t2 − 10.5t3 + 4t3

= 2− 2t3 − 6t+ 6t2 + 3t+ 3t3 − 6t2 − 10.5t3 + 10.5t2 + 4t3

= 2− 3t+ 10.5t2 − 5.5t3.

Again let

y(t) =
3∑

i=0

yiBi,3(t) = y0B0,3(t) + y1B1,3(t) + y2B2,3(t) + y3B3,3(t).

Then by substituting the values of Bernstein polynomials, we get

y(t) = 2(1− t)3 + 1.5(3t)(1− t)2 + 0(3t2(1− t)) + 1t3

= 2(1− t3 − 3t+ 3t2) + 1.5(3t(1 + t2 − 2t)) + t3

= 2− 2t3 − 6t+ 6t2 + 4.5t+ 4.5t3 − 9t2 + t3

= 2− 1.5t− 3t2 + 3.5t3.

Therefore by (1.11), we get the Be’zeir curve

P (t) = (x(t), y(t)) =
(
2− 3t+ 10.5t2 − 5.5t3, 2− 1.5t− 3t2 + 3.5t3

)
.

�

Example 1.6.2. Find the Be’zeir curves P (t) and Q(t) of degree 3 which have set of

control points {(0, 3), (1, 5), (2, 1), (3, 3)} and {(3, 3), (4, 5), (5, 1), (6, 3)} respectively.

Solution. First we find Be’zeir curve P (t) = (x(t), y(t)) of degree 3, having the set

of control points (xi, yi) = {(0, 3), (1, 5), (2, 1), (3, 3)}. Since

x(t) =
3∑

i=0

xiBi,n(t) = x0B0,3(t) + x1B1,3(t) + x2B2,3(t) + x3B3,3(t).
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Then by using (1.4), and (xi, yi) = {(0, 3), (1, 5), (2, 1), (3, 3)}

x(t) = (0)(1− t)3 + (1)(3t)(1− t)2 + (2)(3t2(1− t)) + 3t3

= 3t+ 3t3 − 6t2 + 6t2 − 6t3 + 3t3

= 3t

Now since

y(t) =
3∑

i=0

yiBi,3(t) = y0B0,3(t) + y1B1,3(t) + y2B2,3(t) + y3B3,3(t).

Then by using (1.4), and (xi, yi) = {(0, 3), (1, 5), (2, 1), (3, 3)}, we get

y(t) = 3(1− t)3 + 5(3t)(1− t)2 + (1)3t2(1− t) + 3t3

= 3(1− t3 − 3t+ 3t2) + 15(3t(1 + t2 − 2t)) + +3t2 − 3t3 + 3t3

= 12t3 − 18t2 + 6t+ 3.

Thus the Be’zeir curve P (t) of degree 3, having the set of control points (xi, yi) =

{(0, 3), (1, 5), (2, 1), (3, 3)} is

P (t) = (x(t), y(t)) =
(
3t, 12t3 − 18t2 + 6t+ 3

)
. (1.12)

Now we find Be’zeir curve Q(t) = (x(t), y(t)) of degree 3, having the set of control

points (xi, yi) = {(3, 3), (4, 5), (5, 1), (6, 3)}. Since

x(t) =
3∑

i=0

xiBi,n(t) = x0B0,3(t) + x1B1,3(t) + x2B2,3(t) + x3B3,3(t).

Then by using (1.4), and (xi, yi) = {(3, 3), (4, 5), (5, 1), (6, 3)}

x(t) = (3)(1− t)3 + (4)(3t)(1− t)2 + (5)(3t2(1− t)) + 6t3

= 3− 3t3 +−9t+ 9t2 + 12t+ 12t3 − 24t2 + 15t2 − 15t3 + 6t3

= 3 + 3t.
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Again since

y(t) =
3∑

i=0

yiBi,3(t) = y0B0,3(t) + y1B1,3(t) + y2B2,3(t) + y3B3,3(t).

Then by using (1.4), and (xi, yi) = {(3, 3), (4, 5), (5, 1), (6, 3)}

y(t) = 3(1− t)3 + 5(3t)(1− t)2 + 1(3t2(1− t)) + 3t3

= 3(1− t3 − 3t+ 3t2) + 15(3t(1 + t2 − 2t)) + +3t2 − 3t3 + 3t3

= 12t3 − 18t2 + 6t+ 3.

Thus the Be’zeir curves Q(t) of degree 3, having the set of control points (xi, yi) =

{(3, 3), (4, 5), (5, 1), (6, 3)} is

Q(t) = (x(t), y(t)) =
(
3 + 3t, 12t3 − 18t2 + 6t+ 3

)
. (1.13)

�

1.6.1 Properties of Be’zeir curve

Property 1.6.1. Be’zeir curve is continuous and has continuous derivatives on the interval

[0, 1].

Proof. As we know that Be’zeir curve is

P (t) =
n∑

i=0

piBi,n(t), t ∈ [0, 1],

where Bi,n(t) are Bernstein polynomials. We know that every polynomial is con-

tinuous and has continuous derivatives of all order. It follows that Bezier curve is

also continuous and all its derivative exists and are continuous. This completes the

proof.

Property 1.6.2. Endpoint Interpolation property: Be’zeir curve P (t) interpolates /

passes through initial p0 and final pn points of its control polygon.
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Proof. Consider Be’zeir curve with control points {p0, p1, p2, · · · , pn}

P (t) =
n∑

i=0

piBi,n(t).

We will prove that P (0) = p0 and P (1) = pn. Now, for t = 0

P (0) =
n∑

i=0

piBi,n(0) = p0B0,n(0) + p1B1,n(0) + p2B2,n(0) + · · ·

+pnBn,n(0).

By using (1.5)

P (0) = p0(1) + p1(0) + p2(0) + · · ·+ pn(0) = p0.

For t = 1

P (1) =
n∑

i=0

piBi,n(1) = p0B0,n(1) + p1B1,n(1) + p2B2,n(1) + · · ·

+pnBn,n(1).

By using (1.6)

P (1) = p0(0) + p1(0) + p2(0) + · · ·+ pn(1) = pn.

Hence Be’zeir curve always passes through initial and final pints. This completes

the proof.

Property 1.6.3. The tangent to a Be’zeir curve at the end points are parallel to the lines

through end points and adjacent control points.

Proof. If P (t) is a Be’zeir curve and P ′(t) is it derivative then we will proof that

Tangent P ′(0) at p0 is parallel to the line passes through p0 and p1.

Tangent P ′(1) at pn is parallel to the line passes through pn−1 and pn.
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In other word, we will prove that

P ′(0) = n(p1 − p0),

P ′(1) = n(pn − pn−1). (1.14)

Taking derivative of (1.10)

P ′(t) =
n∑

i=0

pi
d

dt
(Bi,n(t)).

By (1.8), we have

P ′(t) = n
n∑

i=0

pi [Bi−1,n−1(t)−Bi,n−1(t)] . (1.15)

For t = 0, we get

P ′(0) = n
n∑

i=0

pi [Bi−1,n−1(0)−Bi,n−1(0)]

= n [p0 {B0−1,n−1(0)−B0,n−1(0)}+ p1 {B0,n−1(0)−B1,n−1(0)}

+p2 {B1,n−1(0)−B2,n−1(0)}+ · · ·+ pn {Bn−1,n−1(0)−Bn,n−1(0)}] .

By using (1.5), we get

P ′(0) = n [p0 {0− 1}+ p1 {1− 0}+ p2 {0− 0}+ · · ·+ pn {0− 0}]

= n(p1 − p0).

Now for t = 1

P ′(1) = n

n∑
i=0

pi [Bi−1,n−1(1)−Bi,n−1(1)]

= n [p0 {B0−1,n−1(1)−B0,n−1(1)}+ p1 {B0,n−1(1)−B1,n−1(1)}

+p2 {B1,n−1(1)−B2,n−1(1)}+ · · ·+ pn {Bn−1,n−1(1)−Bn,n−1(1)}] .



30 CHAPTER 1. REPRESENTATIONS OF THE CURVES

By using (1.6), we get

P ′(1) = np0 {0− 0}+ p1 {0− 0}+ p2 {0− 0}+ · · ·

+pn−1 {0− 1}+ pn {1− 0} = n(pn − pn−1).

This completes the proof.

Property 1.6.4. The curvature at the end points of control polygon of Be’zeir curve are

parallel to p2 − 2p1 + p0 and pn − 2pn−1 + pn−2.

Proof. If P (t) is a Be’zeir curve and P ′′(t) is its 2nd derivative then, we will proof

that

P ′′(0) = n(n− 1)(p2 − 2p1 + p0),

P ′′(1) = n(n− 1)(pn − 2pn−1 + pn−2). (1.16)

By (1.15), we have

P ′(t) = n
n∑

i=0

pi{Bi−1,n−1(t)−Bi,n−1(t)}.

Now by taking derivative, we get

P ′′(t) = n
n∑

i=0

pi

{
d

dt
Bi−1,n−1(t)−

d

dt
Bi,n−1(t)

}
.

By using (1.8)

P ′′(t) = n(n− 1)
n∑

i=0

pi {[Bi−2,n−2(t)−Bi−1,n−2(t)]

− [Bi−1,n−2(t)−Bi,n−2(t)]}

= n(n− 1)
n∑

i=0

pi [Bi−2,n−2(t)− 2Bi−1,n−2(t) +Bi,n−2(t)] .

For t = 0
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P ′′(0) = n(n− 1)
n∑

i=0

pi [Bi−2,n−2(0)− 2Bi−1,n−2(0) +Bi,n−2(0)] .

Expanding

P ′′(0) = n(n− 1) {p0 [B−2,n−2(0)− 2B−1,n−2(0) +B0,n−2(0)]

+p1 [B−1,n−2(0)− 2B0,n−2(0) +B1,n−2(0)]

+p2 [B0,n−2(0)− 2B1,n−2(0) +B2,n−2(0)]

+ · · · · · ·

+pn [Bn−2,n−2(0)− 2Bn−1,n−2(0) +Bn,n−2(0)]} .

By using (1.5)

P ′′(0) = n(n− 1) {p0 [0− 0 + 1] + p1 [0− 2 + 0] + p2 [1− 0 + 0]

+p3 [0− 0 + 0] + · · · · · ·+ pn [0− 0 + 0]}

= n(n− 1)(p2 − 2p1 + p0).

Now for t = 1

P ′′(1) = n(n− 1)
n∑

i=0

pi [Bi−2,n−2(1)− 2Bi−1,n−2(1) +Bi,n−2(1)] .

Expanding

P ′′(1) = n(n− 1) {p0 [B−2,n−2(1)− 2B−1,n−2(1) +B0,n−2(1)]

+p1 [B−1,n−2(1)− 2B0,n−2(1) +B1,n−2(1)]

+p2 [B0,n−2(1)− 2B1,n−2(1) +B2,n−2(1)]

+p3 [B1,n−2(1)− 2B2,n−2(1) +B3,n−2(1)] + · · ·

+pn [Bn−2,n−2(1)− 2Bn−1,n−2(1) +Bn,n−2(1)]} .
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Again by (1.6)

P ′′(1) = n(n− 1) {p0 [0− 0 + 0] + p1 [0− 0 + 0] + p2 [0− 0 + 0]

+p3 [0− 0 + 0] + · · · · · ·+ pn−2[0− 0 + 1] + pn−1[0− 2 + 0]

+ pn[1− 0 + 0]}

= n(n− 1)(pn − 2pn−1 + pn−2).

This completes the proof.

Example 1.6.3. Consider the composite Be’zier curve made by Be’zier curves P (t)

and Q(t) of degree 3 with points sets: {(0, 3), (1, 5), (2, 1), (3, 3)} and {(3, 3), (4, 5),

(5, 1), (6, 3)} respectively. Then discuss the parametric and geometric continuities.

Solution. Since by (1.12) and (1.13), we have

P (t) =
(
3t, 12t3 − 18t2 + 6t+ 3

)
,

Q(t) =
(
3 + 3t, 12t3 − 18t2 + 6t+ 3

)
,

This implies

P ′(t) =
(
3, 36t2 − 36t1 + 6

)
, P ′′(t) =

(
0, 72t1 − 36

)
,

Q′(t) =
(
3, 36t2 − 36t1 + 6

)
, Q′′(t) =

(
0, 72t1 − 36

)
,

P ′′′(t) = (0, 72) , P iv(t) = (0, 0) ,

Q′′′(t) = (0, 72) , Qiv(t) = (0, 0) .

We see that P (1) = Q(0) = (3, 3), i.e. last point of P (t) and initial point of Q(t) are

same, so P (t) and Q(t) are join together. In other word, both pieces are joined by

C0-continuity as well as G0-continuity. Since P (t) and Q(t) are polynomials and

polynomials are continuous, therefore composite Be’zier curve is C0 as well as G0-

continuous over the entire domain.

Now since P (1) = Q(0) = (3, 3) and P ′(1) = Q′(0) = (3, 6), this means P (t) and

Q(t) are join together by C1-continuity as well as G1-continuity. Since P (t) and
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Q(t) are polynomials and polynomials are continuous, therefore composite Be’zier

curve is C1 as well as G1-continuous over the entire domain.

Now since P (1) = Q(0) = (3, 3) and P ′(1) = Q′(0) = (3, 6) and P ′′(1) = (0, 36) ̸=

Q′′(0), this means P (t) and Q(t) are not joined together by C2-continuity. But

P (1) = Q(0) = (3, 3) and P ′(1) = Q′(0) = (3, 6) and Q′′(0) = (0,−36) = −1(0, 36) =

−1P ′′(1), this means P (t) and Q(t) are joined together by G2 -continuity. Therefore

composite Be’zier curve is G2 continuous over the entire domain but not C2 con-

tinuous.

Since P (1) = Q(0) = (3, 3), P ′(1) = Q′(0) = (3, 6), Q′′(0) = −1P ′′(1), and P ′′′(1) =

Q′′′(0) = (0, 72), therefore composite Be’zier curve is G3-continuous over the entire

domain. Similarly, we see that composite Be’zier curve is G∞-continuous over the

entire domain. This completes the proof. �
Alternate method to check C0, C1 and C2-continuities:

Solution. From above example, {p0, p1, p2, p3}={(0, 3), (1, 5), (2, 1), (3, 3)} and {q0, q1,

q2, q3} = {(3, 3), (4, 5), (5, 1), (6, 3)}. Since the end point p3 = (3, 3) of P (t) and first

point q0 = (3, 3) of Q(t) is same, therefore P (t) and Q(t) are joined. That is C0-

continuity exist at the joint.

By (1.13), we know that P ′(1) = n(pn − pn−1) and Q′(0) = n(q1 − q0), but n = 3, so

P ′(1) = 3(p3 − p2) = 3 {(3, 3)− (2, 1)} = (3, 6),

Q′(0) = 3(q1 − q0) = 3 {(4, 5)− (3, 3)} = (3, 6).

So P ′(1) = Q′(0) = (3, 6). Hence P (t) and Q(t) are joined with C1 continuity.

By (1.16),

P ′′(1) = n(n− 1)(pn − 2pn−1 + pn−2),

Q′′(0) = n(n− 1)(q2 − 2q1 + q0).

For n = 3, we have

P ′′(1) = 3(3− 1)(p3 − 2p2 + p1),

Q′′(0) = 3(3− 1)(q2 − 2q1 + q0).
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This implies

P ′′(1) = 6 {(3, 3)− 2(2, 1) + (1, 5)} = (0, 36),

Q′′(0) = 6 {(5, 1)− 2(4, 5) + (3, 3)} = (0,−36).

Since P ′′(1) ̸= Q′′(0), so P (t) and Q(t) are not joined with C2 continuity. But

Q′′(0) = (0,−36) = −1(0, 36) = −1P ′′(1),

so P (t) and Q(t) are joined with G2-continuity. �

Example 1.6.4. If following is the composite Be’zier curve

P (t) = {(−9, 0), (−8, 1), (−8, 2.5), (−4, 2.5)},

Q(t) = {(−4, 2.5), (−3, 3.5), (−4, 4), (0, 4)},

R(t) = {(0, 4), (2, 4), (3, 4), (5, 2)},

S(t) = {(5, 2), (6, 2), (20, 3), (18, 0)},

then discuss the parametric and geometric continuities.

Solution. C0-, G0-continuity: Since

p3 = q0 = (−4, 2.5), q3 = r0 = (0, 4), r3 = s0 = (5, 2),

therefore all cubic Be’zier curves are joined so composite Be’zier curve is C0 as well

as G0-continuous.

C1-, G1-continuity:

P ′(1) = 3(p3 − p2) = 3[(−4, 2.5)− (−8, 2.5)] = (12, 0),

Q′(0) = 3(q1 − q0) = 3[(−3, 3.5)− (−4, 2.5)] = (3, 4.5).

As P ′(1) ̸= Q′(0), so P (t) and Q(t) curves are not smoothly joint that is not joined
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with C1 continuity. Here G1-continuity also does not exist. Since

Q′(1) = 3(q3 − q2) = 3[(0, 4)− (−4, 4)] = (12, 0),

R′(0) = 3(r1 − r0) = 3[(2, 4)− (0, 4)] = (6, 0).

As Q′(1) ̸= R′(0), so Q(t) and R(t) are not joined with C1 continuity. But Q′(1) =

(12, 0) = 2(6, 0) = 2R′(0), so Q(t) and R(t) are joined with G1 continuity. Since

R′(1) = 3(r3 − r2) = 3[(5, 2)− (3, 4)] = (6,−6),

S ′(0) = 3(s1 − s0) = 3[(6, 2)− (5, 2)] = (3, 0).

As R′(1) ̸= S ′(0), so R(t) and S(t) are not joined with C1 continuity. Here G1-

continuity also does not exist. Here we conclude that the composite Be’zier curve

is not C1 as well not G1-continuous on the entire domain. �

Definition 1.6.1. Affine and convex combinations of points: If p1, p2, p3, · · · , pn are

the points and α1, α2, α3, · · · , αn are scalars such that α1 + α2 + α3 + · · · + αn = 1,

then

α1p1 + α2p2 + α3p3 + · · · · · ·+ αnpn (1.17)

is called affine combination of p1, p2, p3, · · · , pn. Since α1 = 1 − α2 − α3 − · · · − αn,

therefore affine combination (1.17) can be written as

p1 + α2(p2 − p1) + α3(p3 − p1) + · · ·+ αn(pn − p1). (1.18)

The combinations (1.17) and (1.18) are called convex combinations if

α1 + α2 + α3 + · · ·+ αn = 1, and 0 ≤ αi ≤ 1, ∀ i = 1, 2, 3, · · · , n.

Geometrical interpretations:

Let p1 and p2 be any points then p = α1p1+α2p2, where α1+α2 = 1, and 0 ≤ α1, α1,≤

1, is convex combination of p1, p2. Since α1 = 1− α2, therefore p = p1 + α2(p2 − p1).

The point p will always lie on the line segment joining the points p1 and p2. When
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α2 = 0 then p = p1 and when α2 = 1 then p = p2. When 0 < α1, α1, < 1, then point

p will lie on the line segment in between the points p1 and p2.

If p = p1 + α2(p2 − p1) + α3(p3 − p1), and α1 + α2 + α3 = 1, with 0 ≤ α1, α2, α3 ≤ 1,

then the point p is called convex combination of the points p1, p2, and p3.

• If αi = 0 for any i = 1, 2, 3 then p will be on the boundary of triangle made by

the points p1, p2, and p3,

• If 0 < αi < 1 then p will be inside of the triangle,

• If any αi < 0 or αi > 1 then point p will be outside of the triangle.

Definition 1.6.2. Convex set: A subset C of plane is said to be a convex set pro-

vided that all the points on the line segment joining any two points in C are also

elements of the set C (see Figure 1.1).

Convex set Not convex set

Figure 1.1: Convex and non-convex set

Definition 1.6.3. Convex Hull: The convex hull of the set C is the intersection of all

convex sets contained in C. The convex hull is the smallest convex set containing

a set of points. Geometrically, imagine the control points as being pegs, the convex

hull of control points is a shape of a rubber-band stretched around the pegs (see

Figure 1.2).

Mathematically, If p1, p2, p3, · · · , pn are the points and α1, α2, α3, · · · , αn are scalars

and
∑n

i=1 αipi is the linear combinations of points then the convex Hull property is

satisfied if and only if

• All αi are non negative, i.e. αi > 0, and
∑n

i=1 αi = 1.

Property 1.6.5. Be’zeir curve satisfies convex hull property
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Figure 1.2: Convex Hull

We know that P (t) =
∑n

i=0Bi,n(t)pi represents Be’zeir curve. Since Bi,n(t) are

non-negative, and
∑n

i=0 Bi,n(t) = 1, therefore Be’zeir curve satisfies the convex

Hull property. It means, Be’zeir curve will lie inside the convex hull of the points

p0, p1, · · · , pn.

Property 1.6.6. Be’zeir curve satisfies affine invariance property

It is often necessary to subject to Be’zeir curve to an affine transformation in

order to scale it, orient it, or position it for subsequent use. Suppose we wish to

transform point P (t) on the Be’zeir curve to the new point Q(t), using the affine

transform T : Am → An, i.e.

Q(t) = T (P (t)) = T

(
n∑

i=0

Bi,n(t)pi

)
.

It means that, to find Q(t) at any value of t, we must first evaluate P (t) and then

transform it, effectively starting over fresh for each new t. But this, in fact, is not

so: we need only transform the control points (once) and then use the new control

points in the same Bernstein form to re-create Be’zeir curve at any t that is

Q(t) = T (P (t)) =
n∑

i=0

T (pi)Bi,n(t).

Affine invariance means that the transformed curve is identical to the curve that is

based on the transformed control points.

Example 1.6.5. Figure 1.3 shows a Be’zeir curve based on the control points p0, p1, p2,

p3. These points are rotated, scaled, and translated to the new control points q0, q1, q2,

q3, and the Be’zeir curve determined by them is drawn. The curve is identical, point

by point, to the result of transforming the original Be’zeir curve.



38 CHAPTER 1. REPRESENTATIONS OF THE CURVES

P1

P3

P2

P0

Q
0

Q
3

Q
2

Q
1

Figure 1.3: Affine invariance property

Property 1.6.7. Invariance under affine transformation of the parameter

One may think that the Be’zeir curve is defined for the interval [0, 1] i.e. 0 ≤ t ≤ 1.

This is done because it is convenient not because it is necessary. One may think of

a curve as being defined on any arbitrary interval [a, b] i.e. a ≤ u ≤ b. To do this,

we simply put

t =
u− a

b− a

and the transition from the interval [0, 1] to [a, b] is an affine map

when u = a , then t = 0,

when u = b , then t = 1.

It means Be’zeir curve defined over the interval t ∈ [0, 1]

P (t) =
n∑

i=0

Bi,n(t)pi,

can be parameterized over the interval u ∈ [a, b] as

P (u) =
n∑

i=0

Bi,n

(
u− a

b− a

)
pi.

For example, if u ∈ [1, 2] then

P (u) =
n∑

i=0

Bi,n

(
u− 1

2− 1

)
pi =

n∑
i=0

Bi,n(u− 1)pi.

Property 1.6.8. Symmetry of Be’zeir curve

It does not matter, if the control points of Be’zeir curve are labeled p0, p1, p2, p3,

· · · , pn or pn, pn−1, · · · , p1, p0 in different ordering then Be’zeir curves are the same.
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They differ only in the direction in which they were drawn i.e.

P (t) =
n∑

i=0

Bi,n(t)pi =
n∑

i=0

Bn−i,n(1− t)pi.

This follows from the identity

Bn−i,n(1− t) =

(
n

n− i

)
(1− t)n−i(1− (1− t))n−(n−i).

This implies

Bn−i,n(1− t) =

(
n

n− i

)
(1− t)n−i(t)i =

(
n

i

)
ti(1− t)n−i = Bi,n(t).

Property 1.6.9. Be’zeir curve satisfies variation diminishing property

Be’zeir curve cannot fluctuate more than their control polygon does, more pre-

cisely no straight line can have more intersection with Be’zier then it has with its

control polygon. See Figure 1.4, where the straight line intersect the control poly-

gon at 5-points but the Be’zier curve at 3-points.

P
0

P
1

P2

P
3

P
4P

5

P
6

P
7

Control Polygon

Be’zier Curve

Straight Line

Figure 1.4: Variation diminishing property

Property 1.6.10. Linear precision

The property of archiving a straight line / portion of a curve by properly posi-

tioning the control points is called linear precision. Can a Be’zier curve a straight

line? Yes convex hull property shows that it can, if all the control points lie on the

same line, the Be’zier curve be a straight line.

Property 1.6.11. Pseudo local control
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The Bernstein polynomial has only one maximum attain at t = i
n

, this has a de-

sign application if we move only one of the central polygon vertex say pi, then the

curve is mostly effected by the change in the region of the curve around the peri-

metric value i
n

, this make the effect of the change reasonably predictable. Although

the change effects the whole curve but note that the curve always change globally

(see Figure 1.5).

P1

P0

P’1

P3

Point moved

Global Change

P2

Figure 1.5: Pseudo local control

Definition 1.6.4. Support of the function The set of parameter t in which the basis

function ( i.e. Bernstein polynomial) is active (non-zero) is called support of the

function.

1.7 The De-Casteljau algorithm

The De-Casteljau algorithm uses a sequence of points p0, p1, p2, · · · , pn, construct a

well defined value of P (t) at each value of t from 0 to 1. Thus it provides a way

to generate a curve from set of control points changing the point change the curve.

For the given points we can construct a curve P (t) by the following rule.

p
(j)
i =

 (1− t)p
(j−1)
i (t) + tpj−1

i+1 if j > 0

pi if j = 0.

Example 1.7.1. Construct the curve from three points by using De-Casteljau algo-

rithm.

Solution. Let us consider the control points p0, p1, p2. Get a control polygon by
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joining these points with straight lines (see Figure 1.6a).

Step-I: First round (see Figure 1.6b)

P1

P2
P0

P1

P2

P0

(1)

P1

(1)

P1

P2
P0

P0

(1)

P1

(1)

P0

(2)

(a) (b) (c)

Figure 1.6: Step-I: Initial, 1st and 2nd rounds.

Compute the point p(1)0 on the segment p0p1

p
(1)
0 = (1− t)p0 + tp1.

Compute the point p(1)1 on the segment p1p2

p
(1)
1 = (1− t)p1 + tp2.

Second round: (see Figure 1.6c)

By joining p
(1)
0 and p

(1)
1 , we get a new segment p(1)0 p

(1)
1 . Now find the point p(2)0 on

the new segment by

p
(2)
0 = (1− t)p

(1)
0 + tp

(1)
1 .

Step-II

Now divide the polygon into two sub-polygons i.e. the left and right polygons and

apply the same procedure (see Figure 1.7).

Continue this procedure (see Figure 1.8), in the limit, we get smooth enough the

left and right polygons. We get smooth Be’zier curve by joining these polygons.

�

Example 1.7.2. Develop quadratic Be’zier curve by using the reverse procedure of

De-Casteljau algorithm.
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P0

P0

(1)

P0

(2)

P2

P1

(1)P0

(2)

(Left polygon) (Right polygon)

Figure 1.7: Step-II.

P0

P0

(1)

P0

(2)

P0

(3)

P0

(3)

P0

(4)

P2

P1

(1)
P0

(2)

P1

(3)

P1

(3)

P1

(4)

Figure 1.8: Step-II: 1st and 2nd rounds.

Solution. Start from the last point of De-Casteljau algorithm i.e.

P (t) = p
(2)
0

= (1− t)p
(1)
0 + tp

(1)
1

= (1− t)[(1− t)p0 + tp1] + t[(1− t)p1 + tp2]

= (1− t)2p0 + 2t(1− t)p1 + t2p2

= p0B0,2(t) + p1B1,2(t) + p2B2,2(t)

=
2∑

i=0

piBi,2(t),

which is a Be’zier curve of degree 2 i.e. quadratic Be’zier curve. �

Example 1.7.3. Construct the curve from four points by using De-Casteljau algo-

rithm.

Solution. Let us consider the control points p0, p1, p2, p3. Get a control polygon by

joining these points with straight lines (see Figure 1.9a).
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(0) (0)
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Figure 1.9: Step-I: Initial and first rounds.
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Figure 1.10: Step-I: 2nd and 3rd rounds.

Step-I: First round (see Figure 1.9b)

Compute the point p(1)0 on the segment p0p1

p
(1)
0 = (1− t)p0 + tp1.

Compute the point p(1)1 on the segment p1p2

p
(1)
1 = (1− t)p1 + tp2.

Compute the point p(1)2 on the segment p2p3

p
(1)
2 = (1− t)p2 + tp3.

Second round: (see Figure 1.10a)

By joining p
(1)
0 and p

(1)
1 , p(1)1 and p

(1)
2 , we get a new segment p(1)0 p

(1)
1 , p(1)1 p

(1)
2 . Now

find the point p(2)0 on the new segment by

p
(2)
0 = (1− t)p

(1)
0 + tp

(1)
1 .
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Now find the point p(2)1 on the new segment by

p
(2)
1 = (1− t)p

(1)
1 + tp

(1)
2 .

Third round: (see Figure 1.10b)

By joining p
(2)
0 and p

(2)
1 , we get a new segment p(2)0 p

(2)
1 . Now find the point p(3)0 on

the new segment by

p
(3)
0 = (1− t)p

(2)
0 + tp

(2)
1 .

Step-II

Now divide the polygon into two sub-polygons i.e. the left and right polygons and

apply the same procedure.

Continue this procedure, in the limit, we get smooth enough the left and right

polygons. We get smooth Be’zier curve by joining these polygons. �

Example 1.7.4. Develop cubic Be’zier curve by using the reverse procedure of De-

Casteljau algorithm.

Solution. Start from the last point of De-Casteljau algorithm i.e.

P (t) = p
(3)
0

= (1− t)p
(2)
0 + tp

(2)
1

= (1− t)[(1− t)p
(1)
0 + tp

(1)
1 ] + t[(1− t)p

(1)
1 + tp

(1)
2 ]

= (1− t)2p
(1)
0 + t(1− t)p

(1)
1 + t(1− t)p

(1)
1 + t2p

(1)
2

= (1− t)2p
(1)
0 + 2t(1− t)p

(1)
1 + t2p

(1)
2

= (1− t)2[(1− t)p0 + tp1] + 2t(1− t)[(1− t)p1 + tp2] + t2[(1− t)p2 + tp3]

= (1− t)3p0 + t(1− t)2p1 + 2t(1− t)2p1 + 2t2(1− t)p2 + t2(1− t)p2 + t3p3

= (1− t)3p0 + 3t(1− t)2p1 + 3t2(1− t)p2 + t3p3

= p0B0,3(t) + p1B1,3(t) + p2B2,3 + p2B3,3(t)

=
3∑

i=0

piBi,3(t),

which is a cubic Be’zier curve. �
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1.8 Matrix representation of Be’zier curve

Be’zier curves can easily be represented in matrix notations.

1.8.1 Matrix representation of linear Be’zier curve

The algebraic form of linear Be’zier curve (i.e. n = 1) is

P (t) =
1∑

i=0

piBi,1(t) = p0B0,1(t) + p1B1,1(t) = (1− t)p0 + tp1.

This implies

P (t) =
[
(1− t) t

] p0

p1

 .

The matrix form of linear Bezier curve is

P (t) =
(

1 t
) 1 0

−1 1

 p0

p1

 .

1.8.2 Matrix representation of quadratic Be’zier curve

The algebraic form of quadratic Be’zier curve (i.e. n = 2) is

P (t) =
2∑

i=0

piBi,2(t) = p0B0,2(t) + p1B1,2(t) + p2B2,2(t)

= (1− t)2p0 + 2t(1− t)p1 + t2p2.

This implies

P (t) =
[
(1− t)2 2t(1− t) t2

]
p0

p1

p2

 .
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This can be written as

P (t) =
(

1− 2t+ t2 2t− 2t2 t2
)

p0

p1

p2

 .

The matrix form of quadratic Bezier curve is

P (t) =
(

1 t t2
)

1 0 0

−2 2 0

1 −2 1




p0

p1

p2

 .

1.8.3 Matrix representation of cubic Be’zier curve

The algebraic form of cubic Be’zier curve for t ∈ [0, 1] is

P (t) =
3∑

i=0

piBi,3(t) = p0B0,3(t) + p1B1,3(t) + p2B2,3(t) + p3B3,3(t)

= (1− t)3p0 + 3t(1− t)2p1 + 3t2(1− t)p2 + t3p3.

This implies

P (t) =
(

(1− t)3 3t(1− t)2 3t2(1− t) t3
)


p0

p1

p2

p3

 .

Again implies

P (t) =
(

1 + 3t− 3t2 − t3 3t− 6t2 + 3t3 3t2 − 3t3 t3
)


p0

p1

p2

p3

 .
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The matrix form of cubic Bezier curve is

P (t) =
(

1 t t2 t3
)
M


p0

p1

p2

p3

 , (1.19)

where

M =


1 0 0 0

−3 3 0 0

3 −6 3 0

−1 3 −3 1

 . (1.20)

Example 1.8.1. Find the control points or control polygon for the portion of the

curve for t ∈ [0, 1/2] also find the cubic Be’zier curve.

Solution. Since in general, we define Be’zier curve over the domain t ∈ [0, 1], but

the problem under discussion has domain [0, 1/2] = [a, b], so use parametrization

i.e. replace t by (b−a)t+a = (1/2− 0)t+0 = t/2. This means that the cubic Be’zier

curve Q(t) over the domain [0, 1/2] can be obtained by replacing t by t/2 in (1.19).

Q(t) = P (t/2) =
[
1 t/2 t2/4 t3/8

]
M


p0

p1

p2

p3

 .

This implies

Q(t) =
[
1 t t2 t3

]


1 0 0 0

0 1/2 0 0

0 0 1/4 0

0 0 0 1/8

M


p0

p1

p2

p3

 .
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This again implies

Q(t) =
[
1 t t2 t3

]
MM−1


1 0 0 0

0 1/2 0 0

0 0 1/4 0

0 0 0 1/8

M


p0

p1

p2

p3

 .

This implies

Q(t) =
[
1 t t2 t3

]
M S[0, 1

2
]


p0

p1

p2

p3

 , (1.21)

where

S[0, 1
2
] = M−1


1 0 0 0

0 1/2 0 0

0 0 1/4 0

0 0 0 1/8

M,

and

M =


1 0 0 0

−3 3 0 0

3 −6 3 0

−1 3 −3 1

 , M−1 =


1 0 0 0

1 1/3 0 0

1 2/3 1/3 0

1 1 1 1

 .

This implies

S[0, 1
2
] =


1 0 0 0

1/2 1/2 0 0

1/4 1/2 1/4 0

1
8

3
8

3
8

1
8

 .
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The control points for the portion of the curve for t ∈ [0, 1/2] are given below

S[0, 1
2
]


p0

p1

p2

p3

 =


p0

1/2p0 + 1/2p1

1/4p0 + 1/2p1 + 1/4p2

1/8p0 + 3/8p1 + 3/8p2 + 1/8p3

 ,

By substituting it in (1.21), we get the cubic Be’zier curve over the interval [0, 1/2].

Q(t) =
[
1 t t2 t3

]
M


p0

1/2p0 + 1/2p1

1/4p0 + 1/2p1 + 1/4p2

1/8p0 + 3/8p1 + 3/8p2 + 1/8p3

 .

�

Example 1.8.2. Find the control points or control polygon for the portion of the

curve for t ∈ [1/2, 1] also find the cubic Be’zier curve.

Solution. The problem under discussion has domain [1/2, 1] = [a, b], so use

parametrization i.e. replace t by (b − a)t + a = (1 − 1/2)t + 1/2 = (1/2)t + 1/2.

This means that the cubic Be’zier curve Q(t) over the domain [1/2, 1] can be ob-

tained by replacing t by (1/2)t+ 1/2 in (1.19).

Q(t) = P [(1/2)t+ 1/2]

=
[
1, 1/2 + t/2, 1/4 + t/2 + t2/4, 1/8 + 3t/8 + 3t2/8 + t3/8

]
M


p0

p1

p2

p3

 .
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This implies

Q(t) =
[
1 t t2 t3

]
MM−1


1 1/2 1/4 1/8

0 1/2 1/2 3/8

0 0 1/4 3/8

o 0 0 1/8

M


p0

p1

p2

p3

 .

This implies

Q(t) =
[
1 t t2 t3

]
MS[1/2,1]


p0

p1

p2

p3

 , (1.22)

where

S[ 1
2
,1] = M−1


1 1/2 1/4 1/8

0 1/2 1/2 3/8

0 0 1/4 3/8

0 0 0 1/8

M,

M =


1 0 0 0

−3 3 0 0

3 −6 3 0

−1 3 −3 1

 , M−1 =


1 0 0 0

1 1/3 0 0

1 2/3 1/3 0

1 1 1 1

 .

This further implies

S[ 1
2
,1] =


1 0 0 0

1 1/3 0 0

1 2/3 1/3 0

1 1 1 1




1 1/2 1/4 1/8

0 1/2 1/2 3/8

0 0 1/4 3/8

0 0 0 1/8




1 0 0 0

−3 3 0 0

3 −6 3 0

−1 3 −3 1



=


1/8 3/8 3/8 1/8

0 1/4 1/2 1/4

0 0 1/2 1/2

0 0 0 1

 .
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The set of control points for the portion of the curve for t ∈ [1/2, 1] is defined below

S[ 1
2
,1]


p0

p1

p2

p3

 =


p0/8 + 3p1/8 + 3p2/8 + p3/8

p1/4 + p2/2 + p3/4

p2/2 + p3/2

p3

 ,

while by substituting these points in (1.22), we get the cubic Be’zier curve

Q(t) =
[
1 t t2 t3

]
M


p0/8 + 3p1/8 + 3p2/8 + p3/8

p1/4 + p2/2 + p3/4

p2/2 + p3/2

p3

 .

�

Example 1.8.3. Find the control points or control polygon for the portion of the

curve for t ∈ [1, 2] also find the cubic Be’zier curve.

Solution. The problem under discussion has domain [1, 2] = [a, b], so use parametriza-

tion i.e. replace t by (b − a)t + a = (2 − 1)t + 1 = t + 1. This means that the cubic

Be’zier curve Q(t) over the domain [1, 2] can be obtained by replacing t by t + 1 in

(1.19).

Q(t) =
[
1 (1 + t) (1 + t)2 (1 + t)3

]
M


p0

p1

p2

p3

 .

This implies

Q(t) =
[
1 1 + t 1 + 2t+ t2 1 + 3t+ 3t2 + t3

]
M


p0

p1

p2

p3

 .
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This further implies

Q(t) =
[
1 t t2 t3

]
MM−1


1 1 1 1

0 1 2 3

0 0 1 3

o 0 0 1

M


p0

p1

p2

p3

 .

This again implies

Q(t) =
[
1 t t2 t3

]
MS[1,2]


p0

p1

p2

p3

 , (1.23)

where

S[1,2] = M−1


1 1 1 1

0 1 2 3

0 0 1 3

0 0 0 1

M,

M =


1 0 0 0

−3 3 0 0

3 −6 3 0

−1 3 −3 1

 , M−1 =


1 0 0 0

1 1/3 0 0

1 2/3 1/3 0

1 1 1 1

 .
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S[1,2] =


1 0 0 0

1 1/3 0 0

1 2/3 1/3 0

1 1 1 1




1 1 1 1

0 1 2 3

0 0 1 3

o 0 0 1




1 0 0 0

−3 3 0 0

3 −6 3 0

−1 3 −3 1



=


0 0 0 1

0 0 1 2

0 1 −4 4

−1 6 −12 8

 .

The set of control points for the portion of the curve for t ∈ [, 2] is defined below

S[1,2]


p0

p1

p2

p3

 =


p3

−p2 + 2p3

p1 − 4p2 + 4p3

−p0 + 6p1 − 12p2 + 8p3

 ,

while by substituting these points in (1.23), we get the cubic Be’zier curve

Q(t) =
[
1 t t2 t3

]
M


p3

−p2 + 2p3

p1 − 4p2 + 4p3

−p0 + 6p1 − 12p2 + 8p3

 .

�
Note: From the above discussion, we conclude that, if we apply Si

[1,2]S
k
[0,1/2], we ob-

tain the Bezier control polygon for the portion of the curve where t ranges between

i/2k and (i+ 1)/2k.

1.9 Degree elevation

Suppose we were designing with Be’zier curve of degree n after an attempt, it

may turned out that a degree n curve does not passes sufficient flexibility to mod-

el/describe shape. One way to proceed in such a situation is to increase the flexibil-
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ity of polygon by adding another vertex to it. This corresponds to raise the degree

of the polynomial by 1.

We are thus looking for a curve with vertices. p
(1)
0 , p(1)1 , p(1)2 , · · · · · · , p(1)n+1, that de-

scribes the same curve as the original polygon p0, p1, p2, · · · · · · , pn. Let us describe

our curve as

P (t) = (1− t)P (t) + tP (t). (1.24)

Consider

(1− t)P (t) = (1− t)
n∑

i=0

piBi,n(t) =
n∑

i=0

(1− t)

(
n

i

)
ti(1− t)n−ipi

=
n∑

i=0

n!

i!(n− i)!
ti(1− t)n−i+1pi

=
n∑

i=0

(n+ 1)n!

i!(n− i)!(n+ 1− i)
ti(1− t)n+1−i

(
n+ 1− i

n+ 1

)
pi

=
n∑

i=0

(n+ 1)!

i!(n+ 1− i)!
ti(1− t)n+1−i

(
n+ 1− i

n+ 1

)
pi

=
n∑

i=0

(
n+ 1

i

)
ti(1− t)n+1−i

(
n+ 1− i

n+ 1

)
pi

=
n∑

i=0

Bi,n+1(t)

(
n+ 1− i

n+ 1

)
pi.

This implies

(1− t)P (t) =
n+1∑
i=0

Bi,n+1(t)pi

(
n+ 1− i

n+ 1

)
,

because when i = n + 1 then n+1−i
n+1

= 0, so adding (n + 1)th term which is zero,

does not make any change in the summation.
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Now consider

tP (t) = t
n∑

i=0

piBi,n(t) = t
n∑

i=0

(
n

i

)
ti(1− t)n−ipi

=
n∑

i=0

(
n

i

)
ti+1(1− t)n−ipi =

n∑
i=0

n!

i!(n− i)!
ti+1(1− t)n−ipi

=
n∑

i=0

n!(n+ 1)

i!(n− i)!(i+ 1)
ti+1(1− t)n−i

(
i+ 1

n+ 1

)
pi

=
n∑

i=0

(n+ 1)!

(i+ 1)!(n− i)!
ti+1(1− t)n−i

(
i+ 1

n+ 1

)
pi

=
n∑

i=0

(
n+ 1

i+ 1

)
ti+1(1− t)n−i

(
i+ 1

n+ 1

)
pi

=
n∑

i=0

Bi+1,n+1(t)

(
i+ 1

n+ 1

)
pi.

Replace i by i− 1,

tP (t) =
i−1=n∑
i−1=0

B(i−1)+1,n+1(t)pi−1

(
(i− 1) + 1

n+ 1

)
.

This implies

tP (t) =
i=n+1∑
i=1

Bi,n+1(t)pi−1

(
i

n+ 1

)
.

This again implies

tP (t) =
n+1∑
i=0

Bi,n+1(t)pi−1

(
i

n+ 1

)
,

because when i = 0 then i
n+1

= 0, so adding 0th term which is zero, does not make

any change in the summation. Now by substituting the values of terms (1− t)P (t)

and tP (t) in (1.24), we get

P (t) =
n+1∑
i=0

Bi,n+1(t)pi

(
n+ 1− i

n+ 1

)
+

n+1∑
i=0

Bi,n+1(t)pi−1

(
i

n+ 1

)
,

=
n+1∑
i=0

[(
n+ 1− i

n+ 1

)
pi +

(
i

n+ 1

)
pi−1

]
Bi,n+1(t).
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So we have raised the degree by 1, that is degree of Be’zier curve is n + 1 because

there were n + 1 points in the beginning, now there are n + 2 points, that is for

i = 0, 1, 2, · · · , n+ 1

p
(1)
i =

(
1− i

n+ 1

)
pi +

(
i

n+ 1

)
pi−1. (1.25)

1.9.1 Repeated degree elevation

This process of degree elevation assigns a polygon p(i) to original polygon p. We

may repeat this process and obtained sequence of polygons.

p = p0, p(1), p(2), p(3), · · · .

After r times degree elevation the polygon p(r) has the vertices

pr0, p
r
1, p

r
2, · · · prn+r

and each p
(r)
i is explicitly given by for i = 0, 1, 2, 3, · · · , n+ r

p
(r)
i =

n∑
j=0

pj

(
n

j

)(
r

i− j

)/(
n+ r

i

)
(1.26)

where

n = degree of curve (before the degree elevation),

r = how much degree is raised or number of steps.

Example 1.9.1. If we have Be’zier curve of degree 3 then raise its degree 2 times.

Solution. Consider the Be’zier curve of degree n = 3

P (t) =
3∑

i=0

piBi,3(t).
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After one time degree raising, we will get

P (t) =
4∑

i=0

p
(1)
i Bi,4(t),

where for n = 3 and by (1.26), we have the following control points of Be’zier curve

of degree 4

p
(1)
i =

(
1− i

3 + 1

)
pi +

(
i

3 + 1

)
pi−1, i = 0, 1, 2, 3, 4.

For i = 0, 1, 2, 3, 4

p
(1)
0 = p0,

p
(1)
1 =

3

4
p1 +

1

4
p0,

p
(1)
2 =

1

2
p2 +

1

2
p1,

p
(1)
3 =

1

4
p3 +

3

4
p2,

p
(1)
4 = p3.

After 2nd time degree raising, we will get Be’zier curve of degree 5

P (t) =
5∑

i=0

p
(2)
i Bi,5(t),

where for n = 4 and by (1.26), following are the control points of Be’zier curve of

degree 5

p
(2)
i =

(
1− i

4 + 1

)
p
(1)
i +

(
i

4 + 1

)
p
(1)
i−1, i = 0, 1, 2, 3, 4, 5.

For i = 0, 1, 2, 3, 4, 5
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p
(2)
0 = p

(1)
0 ,

p
(2)
1 =

4

5
p
(1)
1 +

1

5
p
(1)
0 ,

p
(2)
2 =

3

5
p
(1)
2 +

2

5
p
(1)
1 ,

p
(2)
3 =

2

5
p
(1)
3 +

3

5
p
(1)
2 ,

p
(2)
4 =

1

5
p
(1)
4 +

4

5
p
(1)
3 ,

p
(2)
5 = p

(1)
4 .

This implies

p
(2)
0 = p0,

p
(2)
1 =

4

5

(
3

4
p1 +

1

4
p0

)
+

1

5
p0 =

3

5
p1 +

2

5
p0,

p
(2)
2 =

3

5

(
1

2
p2 +

1

2
p1

)
+

2

5

(
3

4
p1 +

1

4
p0

)
=

3

10
p2 +

6

10
p1 +

1

10
p0,

p
(2)
3 =

2

5

(
1

4
p3 +

3

4
p2

)
+

3

5

(
1

2
p2 +

1

2
p1

)
=

1

10
p3 +

6

10
p2 +

3

10
p1,

p
(2)
4 =

1

5
p3 +

4

5

(
1

4
p3 +

3

4
p2

)
=

2

5
p3 +

3

5
p3,

p
(2)
5 = p3.

By explicit method:

Now we raise the degree by two by using explicit method. That is put n = 3 and

r = 2 in (1.26), we directly get the following control points of Be’zier curve of

degree 5.

p
(2)
i =

3∑
j=0

pj

(
3

j

)(
2

i− j

)/(
3 + 2

i

)
, i = 0, 1, 2, 3, · · · , 3 + 2 = 5,



1.9. DEGREE ELEVATION 59

By substituting i = 0, 1, 2, 3, 4, 5, we get

p
(2)
0 =

3∑
j=0

pj

(
3

j

)(
2

0− j

)/(
5

0

)
= p0

(
3

0

)(
2

0

)/(
5

0

)
+ p1

(
3

1

)(
2

−1

)/(
5

0

)
+p2

(
3

2

)(
2

−2

)/(
5

0

)
+ p3

(
3

3

)(
2

−3

)/(
5

0

)
= p0 + 0 + 0 + 0 = p0,

p
(2)
1 =

3∑
j=0

pj

(
3

j

)(
2

1− j

)/(
5

1

)
= p0

(
3

0

)(
2

1

)/(
5

1

)
+ p1

(
3

1

)(
2

0

)/(
5

1

)
+p2

(
3

2

)(
2

−1

)/(
5

1

)
+ p3

(
3

3

)(
2

−2

)/(
5

1

)
= p0(1)(2)/5 + p1(3)(1)/5 + 0 + 0 + 0

=
2

5
p0 +

3

5
p1,

p
(2)
2 =

3∑
j=0

pj

(
3

j

)(
2

2− j

)/(
5

2

)
= p0

(
3

0

)(
2

2

)/(
5

2

)
+ p1

(
3

1

)(
2

1

)/(
5

2

)
+p2

(
3

2

)(
2

0

)/(
5

2

)
+ p3

(
3

3

)(
2

−1

)/(
5

2

)
=

1

10
p0 + p1(3)(2)/10 + p2(3)(1)/10

=
1

10
p0 +

6

10
p1 +

3

10
p2,
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p
(2)
3 =

3∑
j=0

pj

(
3

j

)(
2

3− j

)/(
5

3

)
= p0

(
3

0

)(
2

3

)/(
5

3

)
+ p1

(
3

1

)(
2

2

)/(
5

3

)
+p2

(
3

2

)(
2

1

)/(
5

3

)
+ p3

(
3

3

)(
2

0

)/(
5

3

)
= p0(0) + p1(3)/10 + p2(3)(2)/10 + p3(1)(1)/10

=
3

10
p1 +

6

10
p2 +

1

10
p3,

p
(2)
4 =

3∑
j=0

pj

(
3

j

)(
2

4− j

)/(
5

4

)
= p0

(
3

0

)(
2

4

)/(
5

4

)
+ p1

(
3

1

)(
2

3

)/(
5

4

)
+p2

(
3

2

)(
2

2

)/(
5

4

)
+ p3

(
3

3

)(
2

1

)/(
5

4

)
= p0(0) + p1(0) + p2(3)(1)/5 + p3(1)(2)/5

=
3

5
p2 +

2

5
p3,

p
(2)
5 =

3∑
j=0

pj

(
3

j

)(
2

5− j

)/(
5

5

)
= p0

(
3

0

)(
2

5

)/(
5

5

)
+ p1

(
3

1

)(
2

4

)/(
5

5

)
+p2

(
3

2

)(
2

3

)/(
5

5

)
+ p3

(
3

3

)(
2

2

)/(
5

5

)
= p0(0) + p1(0) + p2(0) + p3(1)(1)/1

= p3.

�


