Lab Manual of Programming Fundamentals

Lab 10

Polymorphism

1|Page

Lab Manual of Programming Fundamentals

OBJECTIVE:

Things that will be covered in today s lab:
* Polymorphism

THEORY:

Folymorphism is the term used o describe the process by which different implementations of a
function can be accessed via the same name. For this reason, polvmorphism is sometimes
characterized by the phraze “one mterface, multiple methods™.

In C++ polymorphism is supported both run time, and at compile time. Operator and function
overloading are examples of compile-time polvmorphism. Run-time polymorphism is
accomplished by using inhertance and virtual functions.

One of the key features of class inhertance is that a pointer o a denved class 15 tvpe-compatible
with a pointer o its base class. Polvmorphism is the art of aking advantage of this simple but
powerful and versatile feature.

=lass HYZ
public:
void primt() { cout<<"Farent clzss print:"<<endl; I}
H
clazss ABC: public XY¥Z{
public:
wvolid primt() { cout<<"child class print:"<<endl; 1
H
vold main()
{
X¥YZ *xnys:
LEC zbco;
®yE = &abco; F4 store the address of abco
xyz—>print(); fFf call abc print
i

When the above code is compiled and executed, it produces the following resulr:
Farent class print:

The reason for the incorrect output is that the call of the function pring | is being set once by the
compiler as the version defined in the base class. This is called static resolution of the function

call, or static linkage - the function call is fixed before the program is executed. This is also
sometimes called early hinding becanse the prind () function is set during the compilation of the

program.

2|Page

Lab Manual of Programming Fundamentals

But now, let’s make a slight modification in owr program and precede the declaration of proi ()
in the “abe™ class with the keyword virtoal. After this slight modification, when the previous
example code is compiled and executed. it produces the following resuli:

child class print :

This time, the compiler looks at the contents of the pointer insiead of its ype. Hence, since
address of object of “abe” class is stored in =xvz the respective print() function is called. As vou
can see, each of the child classes has a separate implementation for the function pring). This is
how polymorphism is generally used. You have different classes with a function of the same
name, and even the same parameters, but with different implementations.

Virtual Function:

A virtwal function is a function in a base class that is declared wsing the keyword virtual.
Defining in a base class a virtwal function, with another version in a derived class, signals o the
compiler that we don't want static linkage for this function.

What we do want is the selection of the function to be called at any given point in the program o
bhe based on the Kind of object for which it is called. This som of operation is referred wo

as dynamic linkage, or late hinding.

Example: What should be the output of this program?

zlzss bhase!
public:
wirtualwvoid whaol] { cout<<"Basa\n"; }
HE
clazgs firstc d: public bass|
public: -
wroid who () { cout<<"First Derivation'n"; }
HE
class second d: public bass]
public: -
wolid who) { cout<<"Second Derivation‘n™;}
ki o
int main(}{
base base_cbj:
base *p;
first 4 first obj:
seccnd_d secand_pbj;
= & base cbkbi:
p—}wha:];_
= & first obj;
p-rwhol];
p=& second obj;
p-rwho) -

3|Page

Lab Manual of Programming Fundamentals

Exercise 1:

We want to design a system for a company to calculate salaries of different types of employees.

Consider the following diagram:

salary
Bosic salary /
1 >
1 |

Commissioned

employee Hourly employee Reglular
sal) Extra howrs Emp oyee
ales omount Sy St BoRir Rtk

rale

Total_salary=basicSalary + Total_salary=basicSalary +
payPerHour * extraHours Bonus

Total_salary=salesAmount*
rate/100 + basicSalary

Every employee has an employee 1D and a basic salary. The Commissioned employee has a sales
amount and rate. Hourly employee is paid on the basis of number of working hours. A regular
employee may have a bonus.

You have to implement all the above classes. Write constructor for all classes. The main
functionality is to calculate salary for each employee which is calculated as follows:

Commissioned Employee: Total Salary=sales amount®rate/ 100+basic salary
Hourly Employee: Total salary=basic salary + pay per hour®extra hours
Regular Employee: Total salary= basic salary + bonus

You have to define the following function in all classes:
float calculateSalary() and run the given main() for the following two cases:

1. when the calculateSalaryv() in base class is not virtoal
2. when the calculateSalaryv() in base class is made virtual

4|Page

Lab Manual of Programming Fundamentals

Use the following maini).

int maini()
{

CommissionedEmpleyse EI1(2Z5, 5000, 1000, 14);

4 CREE 1 - deriwved Clzss PBointer peointing to Derived class object
CommissionedEmployee * ptr;

tr = &E1;

cout<<" Commissicned Employese =a

arv:"<<ptr—r>calculateSalary(]:

JFf CRSE Z - Base Class Pointer peointing to Derived class object

Employee * eptr;
eptr = &E1;

cout<<" Cormmissiconed Employee =salary:"<<eptr->calculatelSalzary();
cout<<endl;

CommissionedEmpleyee EZ2 (25, 5000, 1000, 14);
CommissionedEmployee E3 (26, 5000, 2000, 10);

HourlyEmployee HI(Z7, 5

HourlyEmployee HZ (2

BegularEmplovese B1(2
2

——

FBegularEmployes BRIl

ETRT

Employee * list [&];

list[0] = & EZ;
lizt[l] = & E3;
list[Z] = & HL;
list[3] = & HZ;
lizt[4] = & R1l;

(3]
il
|3

listis] =

115

[
1]

for(int i =
cout<<"Emplovee "<<i<<" salary is : "<<listl[ilrcalculateSalarvil;
cout<<endl ;

5|Page

Lab Manual of Programming Fundamentals

Post Lab:

Define a class Shape having an attribute Area and a pure virtual function Calculate_Area.
Also include following in this class.

* A constructor that initializes Area 1o zero.
* A method Display() that display value of member variable.

Now derive two classes from Shape; Cirele having atiribute radius and Rectangle
havingattributes Length and Breadth. Include following in each class.

* A constructor that takes values of member variables as argument.

* A method Display() that overrides Display() method of Shape class.

* A method Calculate_Areal) that calculates the area as follows:

Area of Circle= PI* Radius2
Area of Rectangle=Length*Breadth

Use following driver program to test above classes.

int main()

Shape *p;

Circle CLi5);
Bectangle RL(4,8);
p=&C1;

p-rCaloulate Rres();
p—-*Display();

p=E&R1;

p—>Calculate Areal(];
p—>Display(];

return 4O;

6|Page

