Lab Manual of Programming Fundamentals

Lab 02,

Pointers and Dynamic Arrays

1|Page

Lab Manual of Programming Fundamentals

OBJECTIVE:
Things that will be covered in today’s lab:

e Pointers
e Dynamic Arrays

THEORY:

Pointer variable: A variable whose content is an address (i.e., a memory address).In C++, you
declare a pointer variable by using the asterisk symbol (*) between the datatype and the variable
name. The general syntax to declare a pointer variable is as follows:

datatype * identifier;

In C++, the ampersand (&), address of the operator, is a unary operator that returns the address

I3 32)

of its operand. Similarly is a dereferencing operator, refers to the object to which its operand

(pointer) points. For example, given the statements:
int X;

int *p;

p=&x; /lassignsaddressof x top

cout << *p << endl; // pointer p points to x

The arrays discussed in last lab are called static arrays because their size was fixed at compile
time. One of the limitations of a static array is that every time you execute the program, the size
of the array is fixed. One way to handle this limitation is to declare an array that is large enough
to process a variety of data sets. However, if the array is very big and the data set is small, such a
declaration would result in memory waste. On the other hand, it would be helpful if,
during program execution, you could prompt the user to enter the size of the array and then
create an array of the appropriate size.

Dynamic Array: An array created during the execution of a program. To create a

dynamic array, we use new operator.

int size;

2|Page

int *p;

p = newint [size];

Lab Manual of Programming Fundamentals

If you are not in need of dynamically allocated memory anymore, you can use delete operator,
which de-allocates memory previously allocated by new operator.

delete [] p;

Exercise 1:

Write the output of the following C++ codes without running the code in Visual Studio

a)
int x;
int ¥;
int *p~&x;
int *g=&y;
®K=33;
y=4&;
=gy
“p=T78;
cout<oras™ Yeopag™ ¥
cout<<¥pag Meatog;
int =x[3]={0,4,868};
int *p,tl,t2;
=X
Fdem
LI r
cout<<¥*p;
cout<<¥ (p+l) ;
c)

3|Page

Lab Manual of Programming Fundamentals

]

Il
[

H

oo

LT T
Hoi
l_|llj
fad =
Ll
1
L

[N 8]
rﬁl"""

el R~ ot
ol o
b
H
I3

gi+;

Exercise 2:

k=0 k<3 k++)

cout<<<" gy

Write a function resize() that takes as arguments: a pointer pointing to the array of
integers, itssize, and a new_size. New_size can be any number greater than 0. This function
should change the size of the array. If the new size is greater than the previous one, then insert

zeroes in new cells.

Example:

Case 1:

new_size=7, size=5

Before calling r

inew_size > size)

esize function:

After calling resize function:

Case 2:
new_size=3, size=3

Before calling

(new_size<size)

After calling resize function:

array => | 2 | 32| 4 | 34| 51

Array => | 2z | 32 | 4 | 34| s1 | 0 |
resize function:

Array => | 2 | 32| 4 | 34 | 51

Array => | 2 | 32| 4

4|Page

Lab Manual of Programming Fundamentals

Exercise 3:

Write a code that merges two arrays. Creale two dynamic arrays ol sizes size_[and size_2
respectively. Take inpul in these arrays [rom the user. Now create a third array of size
(size_[+size_2) and insert all the elements of both arrays in this array. Remove the duplicate

elements from this array and resize the array 1o a smaller size.

Example:

Array 1=> 1 z 3 4

Lrray 2=> 3 | 4 z 5 7 |

Alter merging Array| and Array2:

Erray 3=> | 1 |

]
]
L
N
N
[]
| o]
-

Alter removing duplicate elements, this array should be of size 6:

z-.rraya=>|1|z_3]=1‘515|?|

Post Lab:

Consider lollowing main lunclion:

vold main()

char input[100]:
cin.getline(input,100):;
J/For example, user enters National University.

char *g=input:
BeverzelSentencs (g »
cout<<input<<endl;

Sf How input array should be changed to lancitaNyvtisrevinU.
}

5|Page

Lab Manual of Programming Fundamentals

Wrile the implementation of the lunction veid ReverseSentence(char®). Assume that each
sentence ends with a [ull stop. You should use the [ollowing function ReverseWord() 1w reverse
each word ol the whole sentence. You are nol allowed o use any slalic array. You are only

allowed 10 use simple character pointers.

wvoid RewverseWord(char #*p, intlen)

char temp;
for (int i=0; i<len/2; i++)
i
temp=p[i]:
plil=p[len-i-1]:
pl[len-i-l]=temp:
}

EE

P~ is a pointer pointing o the first location ol char array and length is the number of characters
in the array. For example, if p is pointing to “HELLO then the length is 5. Alier calling this
function, p is pointing to “OLLEH".

6|Page

