Electric Field

“The field around a charge is called electric field”.
Or

“The electric force per unit charge is called electric field, it is also called electric intensity”.

— It is vector quantity.

E = — (electric field).

— Its unit is N/C.

— Its direction is always from positive to negative charge.

Electric field lines extend away from positive charge (where they originate) and toward

negative charge (where they terminate).

Electric Field Due To A Point Charge

To find the electric field due to acharged particle (often called a point charge), we place a positive
test charge at any point near the particle, at distance r. From Coulomb’s law, the force on the test
charge due to the particle with charge qis
3 1 qn .
F=——-t.
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As previously, the direction of is directly away from the particle if g is positive (because Qo is
positive) and directly toward it if q is negative. We can now write the electric field set up by the

particle (at the location of the test charge) as

. F 1 .
EF=—= — I (charged particle).
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Let’s think through the directions again. The direction of E matches that of the force on the positive
test charge: directly away from the point charge if g is positive and directly toward it if q is

negative.




So, if given another charged particle, we can immediately determine the directions of the
electric field vectors near it by just looking at the sign of the charge g. We can find the magnitude

at any given distance r by converting above equation to a magnitude form:

E— 1 f{
dme, r

(charged particle).

We write |g| to avoid the danger of getting a negative E when ¢ is negative, and then thinking the
negative sign has something to do with direction. Above equation gives magnitude E only. We
must think about the direction separately.

Figure gives a number of electric field vectors at points around a positively charged

particle, but be careful. Each vector represents the vector quantity at

the point where the tail of the arrow is anchored. The vector is not LY g
something that stretches from a ‘“here” to a “there” as with a .
displacement vector. -

In general, if several electric fields are set up at a given point o o ’ @ ’
by several charged particles, we can find the net field by placing a , .

positive test particle at the point and then writing out the force acting
on it due to each particle, such as Fo1 due to particle 1. Forces obey - .

the principle of superposition, so we just add the forces as vectors:

-'F'l:l = Jfrl‘II T jJI:[::2 + o "r-::.'i'

To change over to electric field, we repeatedly use E = F/qo for each of the individual forces:

F, F, Fy E,,
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This tells us that electric fields also obey the principle of superposition. If you want the net electric
field ata given point due to several particles, find the electric field due to each particle (such as Ex
due to particle 1) and then sum the fields as vectors. (As with electrostatic forces, you cannot just

willy-nilly add up the magnitudes.)



Electric Field Due To An Electric Dipole

The electric field lines for two particles that have the same charge magnitude ¢ but opposite signs,

a very common and important arrangement known as an electric dipole. The particles are

separated by distance d and lie along the dipole axis, an axis of symmetry around which you can

imagine rotating. Let’s label that axis as a zaxis. Here we restrict our interest to the magnitude and

direction of the electric field E at an arbitrary point P along the dipole axis, at distance z from the

dipole’s midpoint.

Figure shows the electric fields set up at P by each
particle. The nearer particle with charge +q sets up field E+
in the positive direction of the z axis (directly away from the
particle). The farther particle with charge —q sets up asmaller
field E() in the negative direction (directly toward the
particle). We want the net field at P. However, because the
field vectors are along the same axis, let’s simply indicate the
vector directions with plus and minus signs, as we commonly
do with forces along a single axis. Then we can write the
magnitude of the net field at P as

E= E., —E_,
1 q 1 i
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After a little algebra, we can rewrite this equation as:
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After forming a common denominator and multiplying its terms, we come to

q 2diz q

E= dareyz? (I ( d )3)3 - 2mey? (1 (
pF foJ ) i

Dipole
Center

Up here the +g
field dominates.

;:-EI
'|'.'
=

Down here the —g
field dominates.
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We are usually interested in the electrical effect of a dipole only at distances that are large

compared with the dimensions of the dipole—that is, at distances such that z>>d. At such large



distances, we have d/2z << 1 in above equation.Thus, in our approximation, we can neglect the

d/2z term in the denominator, which leaves us with

E— 1 gd

i
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The product qd, which involves the two intrinsic properties gand d of the dipole, is the magnitude
p of a vector quantity known as the electric dipole moment of the dipole. (The unit of is the

coulomb-meter.) Thus, we can write above equation as

1
E = P‘ (electric dipole).
2me, z°

The direction of pis taken to be from the negative to the positive end of the dipole, as indicated in
Fig. We can use the direction of p to specify the orientation of a dipole.

Above equation shows that, if we measure the electric field of a dipole only at distant
points, we can never find qand d separately; instead, we can find only their product. The field at
distant points would be unchanged if, for example, q were doubled and d simultaneously halved.
Although above equation holds only for distant points along the dipole axis, it turns out that E for
adipole varies as 1/r 3 for all distant points, regardless of whether they lie on the dipole axis; here
ris the distance between the point in question and the dipole center.

Inspection of Fig. and the field lines shows that the direction of for distant points on the
dipole axis is always the direction of the dipole moment vector p. This is true whether point P in
Fig. is on the upper or the lower part of the dipole axis.

Inspection of above equation shows that if you double the distance of a point from a dipole,
the electric field at the point drops by a factor of 8. If you double the distance from a single point
charge, however, the electric field drops only by a factor of 4. Thus the electric field of a dipole
decreases more rapidly with distance than does the electric field of a single charge. The physical
reason for this rapid decrease in electric field for a dipole is that from distant points a dipole looks
like two particles that almost—but not quite—coincide. Thus, because they have charges of equal
magnitude but opposite signs, their electric fields at distant points almost—but not quite—cancel
each other.



