Hall Effect

A beam of electrons in a vacuum can be deflected by a magnetic field. Can the drifting
conduction electrons in a copper wire also be deflected by a magnetic field? In 1879, Edwin
H. Hall, then a 24-year-old graduate student at the Johns Hopkins University, showed that they
can. This Hall effect allows us to find out whether the charge carriers in a conductor are
positively or negatively charged. Beyond that, we can measure the number of such carriers per
unit volume of the conductor.

Figure a shows a copper strip of width d, carrying a current i whose conventional
direction is from the top of the figure to the bottom. The charge carriers are electrons and, as
we know, they drift (with drift speed vd) in the opposite direction, from bottom to top. At the
instant shown in Fig. a, an external magnetic field B, pointing into the plane of the figure, has
just been turned on. From F = qvxB we see that a magnetic deflecting force Fg will act on each

drifting electron, pushing it toward the right edge of the

strip. As time goes on, electrons move to the right, mostly l l
piling up on the right edge of the strip, leaving —a—| ~
uncompensated positive charges in fixed positions at the N _ | +.L;.:.‘
left edge. The separation of positive charges on the left B | _ Br | -

edge and negative charges on the right edge produces an

electric field E within the strip, pointing from left to right M

in Fig. b. This field exerts an electric force Fe on each N j-t}}; = ?T]-_"-E -
electron, tending to push it to the left. Thus, this electric N | _ .
force on the electrons, which opposes the magnetic force

on them, begins to build up. l l

Equilibrium. An equilibrium quickly develops in which

the electric force on each electron has increased enough to " v
match the magnetic force. When this happens, as Fig. b shows, the force due to B and the force
due to Fe are in balance. The drifting electrons then move along the strip toward the top of the
page at velocity vq with no further collection of electrons on the right edge of the strip and thus
no further increase in the electric field E. A Hall potential difference V is associated with the
electric field across strip width d. The magnitude of that potential difference is

V = Ed.

By connecting a voltmeter across the width, we can measure the potential difference between

the two edges of the strip. Moreover, the voltmeter can tell us which edge is at higher potential.



For the situation of Fig. b, we would find that the left edge is at
higher potential, which is consistent with our assumption that the
charge carriers are negatively charged. For a moment, let us make
the opposite assumption, that the charge carriers in current i are
positively charged (Fig. ¢). Convince yourself that as these charge
carriers move from top to bottom in the strip, they are pushed to
the right edge by Fg and thus that the right edge is at higher
potential. Because that last statement is contradicted by our

voltmeter reading, the charge carriers must be negatively charged.
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