
Electric Field 

“The field around a charge is called electric field”. 

Or 

“The electric force per unit charge is called electric field, it is also called electric intensity”.  

→ It is vector quantity. 

 

→ Its unit is N/C. 

→ Its direction is always from positive to negative charge. 

Electric field lines extend away from positive charge (where they originate) and toward 

negative charge (where they terminate). 

 

Electric Field Due To A Point Charge 

To find the electric field due to a charged particle (often called a point charge), we place a positive 

test charge at any point near the particle, at distance r. From Coulomb’s law, the force on the test 

charge due to the particle with charge q is 

 

As previously, the direction of is directly away from the particle if q is positive (because q0 is 

positive) and directly toward it if q is negative. We can now write the electric field set up by the 

particle (at the location of the test charge) as 

 

Let’s think through the directions again. The direction of E matches that of the force on the positive 

test charge: directly away from the point charge if q is positive and directly toward it if q is 

negative. 



So, if given another charged particle, we can immediately determine the directions of the 

electric field vectors near it by just looking at the sign of the charge q. We can find the magnitude 

at any given distance r by converting above equation to a magnitude form: 

 

We write |q| to avoid the danger of getting a negative E when q is negative, and then thinking the 

negative sign has something to do with direction. Above equation gives magnitude E only. We 

must think about the direction separately. 

Figure gives a number of electric field vectors at points around a positively charged 

particle, but be careful. Each vector represents the vector quantity at 

the point where the tail of the arrow is anchored. The vector is not  

something that stretches from a “here” to a “there” as with a 

displacement vector. 

In general, if several electric fields are set up at a given point 

by several charged particles, we can find the net field by placing a 

positive test particle at the point and then writing out the force acting 

on it due to each particle, such as F01 due to particle 1. Forces obey 

the principle of superposition, so we just add the forces as vectors: 

 

To change over to electric field, we repeatedly use E = F/q0 for each of the individual forces: 

 

This tells us that electric fields also obey the principle of superposition. If you want the net electric 

field at a given point due to several particles, find the electric field due to each particle (such as E1 

due to particle 1) and then sum the fields as vectors. (As with electrostatic forces, you cannot just 

willy-nilly add up the magnitudes.) 

 

 

 

 



Electric Field Due To An Electric Dipole 

The electric field lines for two particles that have the same charge magnitude q but opposite signs, 

a very common and important arrangement known as an electric dipole. The particles are 

separated by distance d and lie along the dipole axis, an axis of symmetry around which you can 

imagine rotating. Let’s label that axis as a z axis. Here we restrict our interest to the magnitude and 

direction of the electric field E at an arbitrary point P along the dipole axis, at distance z from the 

dipole’s midpoint. 

Figure shows the electric fields set up at P by each 

particle. The nearer particle with charge +q sets up field E(+) 

in the positive direction of the z axis (directly away from the 

particle). The farther particle with charge −q sets up a smaller 

field E(−) in the negative direction (directly toward the 

particle). We want the net field at P. However, because the 

field vectors are along the same axis, let’s simply indicate the 

vector directions with plus and minus signs, as we commonly 

do with forces along a single axis. Then we can write the 

magnitude of the net field at P as 

 

After a little algebra, we can rewrite this equation as: 

 

After forming a common denominator and multiplying its terms, we come to 

 

We are usually interested in the electrical effect of a dipole only at distances that are large 

compared with the dimensions of the dipole—that is, at distances such that z>>d. At such large 



distances, we have d/2z << 1 in above equation.Thus, in our approximation, we can neglect the 

d/2z term in the denominator, which leaves us with 

 

The product qd, which involves the two intrinsic properties q and d of the dipole, is the magnitude 

p of a vector quantity known as the electric dipole moment of the dipole. (The unit of is the 

coulomb-meter.) Thus, we can write above equation as 

 

The direction of p is taken to be from the negative to the positive end of the dipole, as indicated in 

Fig. We can use the direction of p to specify the orientation of a dipole. 

Above equation shows that, if we measure the electric field of a dipole only at distant 

points, we can never find q and d separately; instead, we can find only their product. The field at 

distant points would be unchanged if, for example, q were doubled and d simultaneously halved. 

Although above equation holds only for distant points along the dipole axis, it turns out that E for 

a dipole varies as 1/r 3 for all distant points, regardless of whether they lie on the dipole axis; here 

r is the distance between the point in question and the dipole center. 

Inspection of Fig. and the field lines shows that the direction of for distant points on the 

dipole axis is always the direction of the dipole moment vector p. This is true whether point P in 

Fig.  is on the upper or the lower part of the dipole axis. 

Inspection of above equation shows that if you double the distance of a point from a dipole, 

the electric field at the point drops by a factor of 8. If you double the distance from a single point 

charge, however, the electric field drops only by a factor of 4. Thus the electric field of a dipole 

decreases more rapidly with distance than does the electric field of a single charge. The physical 

reason for this rapid decrease in electric field for a dipole is that from distant points a dipole looks 

like two particles that almost—but not quite—coincide. Thus, because they have charges of equal 

magnitude but opposite signs, their electric fields at distant points almost—but not quite—cance l 

each other. 


