
Double Slit Interference 

Coherence 

For the interference pattern to appear on viewing screen, the light waves reaching any point on 

the screen must have a phase difference that does not vary in time. The waves passing through 

slits are portions of the single light wave that illuminates the slits. Because the phase difference 

remains constant, the light from slits is said to be completely coherent. 

Sunlight and Fingernails. Direct sunlight is partially coherent; that is, sunlight waves 

intercepted at two points have a constant phase difference only if the points are very close. If 

you look closely at your fingernail in bright sunlight, you can see a faint interference pattern 

called speckle that causes the nail to appear to be covered with specks. You see this effect 

because light waves scattering from very close points on the nail are sufficiently coherent to 

interfere with one another at your eye. The slits in a double-slit experiment, however, are not 

close enough, and in direct sunlight, the light at the slits would be incoherent. To get coherent 

light, we would have to send the sunlight through a single slit because that single slit is small, 

light that passes through it is coherent. In addition, the smallness of the slit causes the coherent 

light to spread via diffraction to illuminate both slits in the double-slit experiment. 

Incoherent Sources. If we replace the double slits with two similar but independent 

monochromatic light sources, such as two fine incandescent wires, the phase difference 

between the waves emitted by the sources varies rapidly and randomly. (This occurs because 

the light is emitted by vast numbers of atoms in the wires, acting randomly and independently 

for extremely short times—of the order of nanoseconds.) As a result, at any given point on the 

viewing screen, the interference between the waves from the two sources varies rapidly and 

randomly between fully constructive and fully destructive. The eye (and most common optical 

detectors) cannot follow such changes, and no interference pattern can be seen. The fringes 

disappear, and the screen is seen as being uniformly illuminated. 

Coherent Source. A laser differs from common light sources in that its atoms emit light in a 

cooperative manner, thereby making the light coherent. Moreover, the light is almost 

monochromatic, is emitted in a thin beam with little spreading, and can be focused to a width 

that almost matches the wavelength of the light. 

Intensity in Double-Slit Interference 

Equations below 

 

And 



 

tell us how to locate the maxima and minima of the double-slit interference pattern on screen 

C as a function of the angle θ in that figure. Here we wish to derive an expression for the 

intensity I of the fringes as a function of θ. The light leaving the slits is in phase. However, let 

us assume that the light waves from the two slits are not in phase when they arrive at point P. 

Instead, the electric field components of those waves at point P are not in phase and vary with 

time as 

 

where v is the angular frequency of the waves and f is the phase constant of wave E2. Note that 

the two waves have the same amplitude E0 and a phase difference of ϕ. Because that phase 

difference does not vary, the waves are coherent. We shall show that these two waves will 

combine at P to produce an intensity I given by 

 

In above eq., I0 is the intensity of the light that arrives on the screen from one slit when the 

other slit is temporarily covered. We assume that the slits are so narrow in comparison to the 

wavelength that this single-slit intensity is essentially uniform over the region of the screen in 

which we wish to examine the fringes. 

Above equations, which together tell us how the intensity I of the fringe pattern varies with the 

angle θ, necessarily contain information about the location of the maxima and minima. Let us 

see if we can extract that information to find equations about those locations. 

Maxima. intensity maxima will occur when 

 

 

which is exactly the expression that we derived earlier for the locations of the maxima. 



Minima. The minima in the fringe pattern occur when 

 

 

which is just the expression we derived earlier for the locations of the fringe minima. 

Figure below, which is a plot of Eq. I = 4I0cos2(1/2ϕ), shows the intensity of double-slit 

interference patterns as a function of the phase difference f between the waves at the screen. 

The horizontal solid line is I0, the (uniform) intensity on the screen when one of the slits is 

covered up. Note in Eq. I = 4I0cos2(1/2ϕ) and the graph that the intensity I varies from zero at 

the fringe minima to 4I0 at the fringe maxima. If the waves from the two sources (slits) were 

incoherent, so that no enduring phase relation existed between them, there would be no fringe 

pattern and the intensity would have the uniform value 2I0 for all points on the screen; the 

horizontal dashed line in Fig. below shows this uniform value. 

Interference cannot create or destroy energy but merely redistributes it over 

the screen. Thus, the average intensity on the screen must be the same 2I0 regardless of whether 

the sources are coherent. This follows at once from Eq. I = 4I0cos2(1/2ϕ); if we substitute , the 

average value of the cosine-squared function, this equation reduces to Iavg 2I0. 

 

We shall combine the electric field components E1 and E2, given by Eqs. E1 = E0sinωt 

and E2 = E0sin(ωt+ϕ), respectively. 

In Fig. a, the waves with components E1 and E2 are represented by phasors of magnitude E0 

that rotate around the origin at angular speed v. The values of E1 and E2 at any time are the 

projections of the corresponding phasors on the vertical axis. Figure a shows the phasors and 

their projections at an arbitrary time t. Consistent with Eqs. E1 = E0sinωt and E2 = E0sin(ωt+ϕ), 

the phasor for E1 has a rotation angle ωt and the phasor for E2 has a rotation angle ωt + ϕ (it is 

phase-shifted ahead of E1). As each phasor rotates, its projection on the vertical axis varies with 



time in the same way that the sinusoidal functions of Eqs. E1 = E0sinωt and E2 = E0sin(ωt+ϕ) 

vary with time. 

To combine the field components E1 and E2 at any point P, we add their phasors vectorially, 

as shown in fig. b. 

 

 

The magnitude of the vector sum is the amplitude E of the resultant wave at point P, and that 

wave has a certain phase constant β. To find the amplitude E in Fig. b, we first note that the 

two angles marked β are equal because they are opposite equal-length sides of a triangle. From 

the theorem (for triangles) that an exterior angle (here ϕ, as shown in Fig. b) is equal to the sum 

of the two opposite interior angles (here that sum is β + β), we see that β = 1/2ϕ. Thus, we have 

 

If we square each side of this relation, we obtain 

 

Intensity. we know that the intensity of an electromagnetic wave is proportional to the square 

of its amplitude. Therefore, the waves we are combining in Fig. b, whose amplitudes are E0, 

each has an intensity I0 that is proportional to , and the resultant wave, with amplitude E, has 

an intensity I that is proportional to E2.Thus, 



 

Substituting E2 = 4E0
2cos2(1/2ϕ) into this equation and rearranging then yield which is I = 

4I0cos2(1/2ϕ), 

 

which we set out to prove. 

This suggests 

 

So above equation for the phase difference between the two waves arriving at point P 

on the screen becomes 

 

Combining More Than Two Waves 

In a more general case, we might want to find the resultant of more than two sinusoidally 

varying waves at a point. Whatever the number of waves is, our general procedure is this: 

1. Construct a series of phasors representing the waves to be combined. Draw them end to end, 

maintaining the proper phase relations between adjacent phasors. 

2. Construct the vector sum of this array. The length of this vector sum gives the amplitude of 

the resultant phasor. The angle between the vector sum and the first phasor is the phase of the 

resultant with respect to this first phasor. The projection of this vector-sum phasor on the 

vertical axis gives the time variation of the resultant wave. 


