
Single Slit Dffraction 

Diffraction and Wave Theory of Light 

We defined diffraction rather loosely as the flaring of light as it emerges from a narrow slit. 

More than just flaring occurs, however, because the light produces an interference pattern 

called a diffraction pattern. For example, when monochromatic light from a distant source 

(or a laser) passes through a narrow slit and is then intercepted by a viewing screen, the light 

produces on the screen a diffraction pattern like that in Figure below.This pattern consists of a 

broad and intense (very bright) central maximum plus a number of narrower and less intense 

maxima (called secondary or side maxima) to both sides. In between the maxima are minima. 

Light flares into those dark regions, but the light waves cancel out one another. Such a pattern 

would be totally unexpected in geometrical optics: If light travelled in straight lines as rays, 

then the slit would allow some of those rays through to form a sharp rendition of the slit on the 

viewing screen instead of a pattern of bright and dark bands as we see in Fig. 36-1. We must 

conclude that geometrical optics is only an approximation. 

 

Edges. Diffraction is not limited to situations in which light passes through a narrow opening 

(such as a slit or pinhole). It also occurs when light passes an edge, such as the edges of the 

razor blade whose diffraction pattern is shown in Fig. below. Note the lines of maxima and 

minima that run approximately parallel to the edges, at both the inside edges of the blade and 



the outside edges. As the light passes, say, the vertical edge at the left, it flares left and right 

and undergoes interference, producing the pattern along the left edge. The rightmost portion of 

that pattern actually lies behind the blade, within what would be the blade’s shadow if 

geometrical optics prevailed. 

 

Floaters. You encounter a common example of diffraction when you look at a clear blue sky 

and see tiny specks and hairlike structures floating in your view. These floaters, as they are 

called, are produced when light passes the edges of tiny deposits in the vitreous humour, the 

transparent material filling most of the eyeball. What you are seeing when a floater is in your 

field of vision is the diffraction pattern produced on the retina by one of these deposits. If you 

sight through a pinhole in a piece of cardboard so as to make the light entering your eye 

approximately a plane wave, you can distinguish individual maxima and minima in the 

patterns. 

Cheerleaders. Diffraction is a wave effect. That is, it occurs because light is a wave and it 

occurs with other types of waves as well. For example, you have probably seen diffraction in 

action at football games. When a cheerleader near the playing field yells up at several thousand 

noisy fans, the yell can hardly be heard because the sound waves diffract when they pass 

through the narrow opening of the cheerleader’s mouth. This flaring leaves little of the waves 

traveling toward the fans in front of the cheerleader. To offset the diffraction, the cheerleader 

can yell through a megaphone. The sound waves then emerge from the much wider opening at 

the end of the megaphone. The flaring is thus reduced, and much more of the sound reaches 

the fans in front of the cheerleader. 

The Fresnel Bright Spot 

Diffraction finds a ready explanation in the wave theory of light. However, this theory, 

originally advanced in the late 1600s by Huygens and used 123 years later by Young to explain 

double-slit interference, was very slow in being adopted, largely because it ran counter to 

Newton’s theory that light was a stream of particles. Newton’s view was the prevailing view 



in French scientific circles of the early 19th century, when Augustin Fresnel was a young 

military engineer. Fresnel, who believed in the wave theory of light, submitted a paper to the 

French Academy of Sciences describing his experiments with light and his wave-theory 

explanations of them. In 1819, the Academy, dominated by supporters of Newton and thinking 

to challenge the wave point of view, organized a prize competition for an essay on the subject 

of diffraction. Fresnel won. The Newtonians, however, were not swayed. One of them, 

S.D.Poisson, pointed out the “strange result” that if Fresnel’s theories were correct, then light 

waves should flare into the shadow region of a sphere as they pass the edge of the sphere, 

producing a bright spot at the center of the shadow. The prize committee arranged a test of 

Poisson’s prediction and dis-covered that the predicted Fresnel bright spot, as we call it today, 

was indeed there (Fig. below). Nothing builds confidence in a theory so much as having one 

of its unexpected and counterintuitive predictions verified by experiment. 

 

Diffraction by a Single Slit: Locating the Minima 

Let us now examine the diffraction pattern of plane waves of light of wavelength l that are 

diffracted by a single long, narrow slit of width a in an otherwise opaque screen B, as shown 

in cross section in Fig. below. (In that figure, the slit’s length extends into and out of the page, 

and the incoming wavefronts are parallel to screen B.) When the diffracted light reaches 

viewing screen C, waves from different points within the slit undergo interference and produce 

a diffraction pattern of bright and dark fringes (interference maxima and minima) on the 

screen. To locate the fringes, we shall use a procedure somewhat similar to the one we used to 

locate the fringes in a two-slit interference pattern. However, diffraction is more 

mathematically challenging, and here we shall be able to find equations for only the dark 

fringes. Before we do that, however, we can justify the central bright fringe seen by noting that 

the Huygens wavelets from all points in the slit travel about the same distance to reach the 



center of the pattern and thus are in phase there. As for the other bright fringes, we can say only 

that they are approximately halfway between adjacent dark fringes. 

Pairings. To find the dark fringes, we shall use a clever (and simplifying) strategy that involves 

pairing up all the rays coming through the slit and then 

finding what conditions cause the wavelets of the rays in 

each pair to cancel each other. We apply this strategy in 

Fig. to locate the first dark fringe, at point P1. 

First, we mentally divide the slit into two zones of equal 

widths a/2. Then we extend to P1 a light ray r1 from the 

top point of the top zone and a light ray r2 from 

the top point of the bottom zone. We want the wavelets 

along these two rays to cancel each other when they 

arrive at P1. Then any similar pairing of rays from 

the two zones will give cancellation. A central axis is 

drawn from the center of the slit to screen C, and P1 is 

located at an angle u to that axis. 

Path Length Difference. The wavelets of the pair of 

rays r1 and r2 are in phase within the slit because they 

originate from the same wavefront passing through the slit, along the width of the slit. 

However, to produce the first dark fringe they must be out of phase by l/2 when they reach P1; 

this phase difference is due to their path length difference, with the path travelled by the wavelet 

of r2 to reach P1 being longer than the path travelled by the wavelet of r1. To display this path 

length difference, we find a point b on ray r2 such that the path length from b to P1 matches the 

path length of ray r1.Then the path length difference between the two ray  is the distance from 

the center of the slit to b. When viewing screen C is near screen B, as in Fig., the diffraction 

pattern on C is difficult to describe mathematically. However, we can simplify the mathematics 

considerably if we arrange for the screen separation D to be much larger than the slit width a. 

Then, as in Fig. below, 



 

we can approximate rays r1 and r2 as being parallel, at angle θ to the central axis. We can also 

approximate the triangle formed by point b, the top point of the slit, and the center point of the 

slit as being a right triangle, and one of the angles inside that triangle as being θ. The path 

length difference between rays r1 and r2 (which is still the distance from the center of the slit 

to point b) is then equal to (a/2) sin θ. 

First Minimum. We can repeat this analysis for any other pair of rays originating at 

corresponding points in the two zones (say, at the midpoints of the zones) and extending to 

point P1. Each such pair of rays has the same path length difference (a/2) sin u. Setting this 

common path length difference equal to l/2 (our condition for the first dark fringe), we have 

which gives us 

 

Given slit width a and wavelength λ, above equation tells us the angle u of the first dark fringe 

above and (by symmetry) below the central axis. 

Narrowing the Slit. Note that if we begin with a > l and then narrow the slit while holding the 

wavelength constant, we increase the angle at which the first dark fringes appear; that is, the 

extent of the diffraction (the extent of the flaring and the width of the pattern) is greater for a 

narrower slit. When we have reduced the slit width to the wavelength (that is, a = λ), the angle 

of the first dark fringes is 90°. Since the first dark fringes mark the two edges of the central 

bright fringe, that bright fringe must then cover the entire viewing screen. 

Second Minimum. We find the second dark fringes above and below the central axis as we 

found the first dark fringes, except that we now divide the slit into four zones of equal widths 

a/4, as shown in below Fig. a. We then extend rays r1, r2, r3, and r4 from the top points of the 

zones to point P2, the location of the second dark fringe above the central axis. To produce that 



fringe, the path length difference between r1 and r2, that between r2 and r3, and that between r3 

and r4 must all be equal to l/2. 

For D >> a, we can approximate these four rays as being parallel, at angle θ to the 

central axis. To display their path length differences, we extend a perpendicular line through 

each adjacent pair of rays, as shown in below Fig. b, to form a series of right triangles, each of 

which has a path length difference as one side. 

We see from the top triangle that the path length difference between r1 and r2 is (a/4) sin u. 

Similarly, from the bottom triangle, the path length difference between r3 and r4 is also (a/4) 

sin θ. In fact, the path length difference for any two rays that originate at corresponding points 

in two adjacent zones is (a/4) sin u. Since in each such case the path length difference is equal 

to l/2, we have which gives us 

 

All Minima. We could now continue to locate dark fringes in the diffraction pattern by splitting 

up the slit into more zones of equal width. We would always choose an even number of zones 

so that the zones (and their waves) could be paired as we have been doing. We would find that 

the dark fringes above and below the central axis can be located with the general equation 

 

 



You can remember this result in the following way. Draw a triangle like the one in figure of 

path length difference, but for the full slit width a, and note that the path length difference 

between the top and bottom rays equals a sin θ. Thus above equation says: 

In a single-slit diffraction experiment, dark fringes are produced where the path length 

differences (a sin u) between the top and bottom rays are equal to l, 2λ, 3λ, . . . . 

This may seem to be wrong because the waves of those two particular rays will be exactly in 

phase with each other when their path length difference is an integer number of wavelengths. 

However, they each will still be part of a pair of waves that are exactly out of phase with each 

other; thus, each wave will be cancelled by some other wave, resulting in darkness. (Two light 

waves that are exactly out of phase will always cancel each other, giving a net wave of zero, 

even if they happen to be exactly in phase with other light waves.) 

Using a Lens. Above equations are derived for the case of D >> a. However, they also apply 

if we place a converging lens between the slit and the viewing screen and then move the screen 

in so that it coincides with the focal plane of the lens. The lens ensures that rays which now 

reach any point on the screen are exactly parallel (rather than approximately) back at the slit.  


