Single Slit Dffraction

Diffraction and Wave Theory of Light

We defined diffraction rather loosely as the flaring of light as it emerges from a narrow slit.
More than just flaring occurs, however, because the light produces an interference pattern
called a diffraction pattern. For example, when monochromatic light from a distant source
(or a laser) passes through a narrow slit and is then intercepted by a viewing screen, the light
produces on the screen a diffraction pattern like that in Figure below.This pattern consists of a
broad and intense (very bright) central maximum plus a number of narrower and less intense
maxima (called secondary or side maxima) to both sides. In between the maxima are minima.
Light flares into those dark regions, but the light waves cancel out one another. Such a pattern
would be totally unexpected in geometrical optics: If light travelled in straight lines as rays,
then the slit would allow some of those rays through to form a sharp rendition of the slit on the
viewing screen instead of a pattern of bright and dark bands as we see in Fig. 36-1. We must

conclude that geometrical optics is only an approximation.
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Edges. Diffraction is not limited to situations in which light passes through a narrow opening
(such as a slit or pinhole). It also occurs when light passes an edge, such as the edges of the
razor blade whose diffraction pattern is shown in Fig. below. Note the lines of maxima and

minima that run approximately parallel to the edges, at both the inside edges of the blade and



the outside edges. As the light passes, say, the vertical edge at the left, it flares left and right
and undergoes interference, producing the pattern along the left edge. The rightmost portion of
that pattern actually lies behind the blade, within what would be the blade’s shadow if
geometrical optics prevailed.

Floaters. You encounter a common example of diffraction when you look at a clear blue sky
and see tiny specks and hairlike structures floating in your view. These floaters, as they are
called, are produced when light passes the edges of tiny deposits in the vitreous humour, the
transparent material filling most of the eyeball. What you are seeing when a floater is in your
field of vision is the diffraction pattern produced on the retina by one of these deposits. If you
sight through a pinhole in a piece of cardboard so as to make the light entering your eye
approximately a plane wave, you can distinguish individual maxima and minima in the
patterns.

Cheerleaders. Diffraction is a wave effect. That is, it occurs because light is a wave and it
occurs with other types of waves as well. For example, you have probably seen diffraction in
action at football games. When a cheerleader near the playing field yells up at several thousand
noisy fans, the yell can hardly be heard because the sound waves diffract when they pass
through the narrow opening of the cheerleader’s mouth. This flaring leaves little of the waves
traveling toward the fans in front of the cheerleader. To offset the diffraction, the cheerleader
can yell through a megaphone. The sound waves then emerge from the much wider opening at
the end of the megaphone. The flaring is thus reduced, and much more of the sound reaches
the fans in front of the cheerleader.

The Fresnel Bright Spot

Diffraction finds a ready explanation in the wave theory of light. However, this theory,
originally advanced in the late 1600s by Huygens and used 123 years later by Young to explain
double-slit interference, was very slow in being adopted, largely because it ran counter to

Newton’s theory that light was a stream of particles. Newton’s view was the prevailing view



in French scientific circles of the early 19th century, when Augustin Fresnel was a young
military engineer. Fresnel, who believed in the wave theory of light, submitted a paper to the
French Academy of Sciences describing his experiments with light and his wave-theory
explanations of them. In 1819, the Academy, dominated by supporters of Newton and thinking
to challenge the wave point of view, organized a prize competition for an essay on the subject
of diffraction. Fresnel won. The Newtonians, however, were not swayed. One of them,
S.D.Poisson, pointed out the “strange result” that if Fresnel’s theories were correct, then light
waves should flare into the shadow region of a sphere as they pass the edge of the sphere,
producing a bright spot at the center of the shadow. The prize committee arranged a test of
Poisson’s prediction and dis-covered that the predicted Fresnel bright spot, as we call it today,
was indeed there (Fig. below). Nothing builds confidence in a theory so much as having one
of its unexpected and counterintuitive predictions verified by experiment.

Diffraction by a Single Slit: Locating the Minima

Let us now examine the diffraction pattern of plane waves of light of wavelength | that are
diffracted by a single long, narrow slit of width a in an otherwise opaque screen B, as shown
in cross section in Fig. below. (In that figure, the slit’s length extends into and out of the page,
and the incoming wavefronts are parallel to screen B.) When the diffracted light reaches
viewing screen C, waves from different points within the slit undergo interference and produce
a diffraction pattern of bright and dark fringes (interference maxima and minima) on the
screen. To locate the fringes, we shall use a procedure somewhat similar to the one we used to
locate the fringes in a two-slit interference pattern. However, diffraction is more
mathematically challenging, and here we shall be able to find equations for only the dark
fringes. Before we do that, however, we can justify the central bright fringe seen by noting that

the Huygens wavelets from all points in the slit travel about the same distance to reach the



center of the pattern and thus are in phase there. As for the other bright fringes, we can say only
that they are approximately halfway between adjacent dark fringes.

Pairings. To find the dark fringes, we shall use a clever (and simplifying) strategy that involves
pairing up all the rays coming through the slit and then

finding what conditions cause the wavelets of the rays in This pair of rays cancel
each other at Py. So

each pair to cancel each other. We apply this strategy in do all such pairings.

Fig. to locate the first dark fringe, at point Px.
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rays r1 and r2 are in phase within the slit because they

originate from the same wavefront passing through the slit, along the width of the slit.
However, to produce the first dark fringe they must be out of phase by 1/2 when they reach Pg;
this phase difference is due to their path length difference, with the path travelled by the wavelet
of rz to reach P1 being longer than the path travelled by the wavelet of r1. To display this path
length difference, we find a point b on ray r2 such that the path length from b to P1 matches the
path length of ray r1.Then the path length difference between the two ray is the distance from
the center of the slit to b. When viewing screen C is near screen B, as in Fig., the diffraction
pattern on C is difficult to describe mathematically. However, we can simplify the mathematics
considerably if we arrange for the screen separation D to be much larger than the slit width a.
Then, as in Fig. below,



This path length
difference shifts
one wave from the
other, which
determines

the interference.

Path length
difference

we can approximate rays ry and rz as being parallel, at angle 6 to the central axis. We can also
approximate the triangle formed by point b, the top point of the slit, and the center point of the
slit as being a right triangle, and one of the angles inside that triangle as being 6. The path
length difference between rays r1 and r2 (which is still the distance from the center of the slit
to point b) is then equal to (a/2) sin 6.

First Minimum. We can repeat this analysis for any other pair of rays originating at
corresponding points in the two zones (say, at the midpoints of the zones) and extending to
point P1. Each such pair of rays has the same path length difference (a/2) sin u. Setting this
common path length difference equal to 1/2 (our condition for the first dark fringe), we have

which gives us
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Given slit width a and wavelength A, above equation tells us the angle u of the first dark fringe
above and (by symmetry) below the central axis.

Narrowing the Slit. Note that if we begin with a > | and then narrow the slit while holding the
wavelength constant, we increase the angle at which the first dark fringes appear; that is, the
extent of the diffraction (the extent of the flaring and the width of the pattern) is greater for a
narrower slit. When we have reduced the slit width to the wavelength (that is, a = 1), the angle
of the first dark fringes is 90°. Since the first dark fringes mark the two edges of the central
bright fringe, that bright fringe must then cover the entire viewing screen.

Second Minimum. We find the second dark fringes above and below the central axis as we
found the first dark fringes, except that we now divide the slit into four zones of equal widths
al4, as shown in below Fig. a. We then extend rays ry, r2, rs, and r4 from the top points of the

zones to point P2, the location of the second dark fringe above the central axis. To produce that



fringe, the path length difference between r1 and r», that between r» and rs, and that between r3
and r4 must all be equal to 1/2.

For D >> a, we can approximate these four rays as being parallel, at angle 6 to the
central axis. To display their path length differences, we extend a perpendicular line through
each adjacent pair of rays, as shown in below Fig. b, to form a series of right triangles, each of
which has a path length difference as one side.

We see from the top triangle that the path length difference between ry and r2 is (a/4) sin u.
Similarly, from the bottom triangle, the path length difference between rz and rs is also (a/4)
sin 0. In fact, the path length difference for any two rays that originate at corresponding points
in two adjacent zones is (a/4) sin u. Since in each such case the path length difference is equal

to 1/2, we have which gives us
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All Minima. We could now continue to locate dark fringes in the diffraction pattern by splitting
up the slit into more zones of equal width. We would always choose an even number of zones
so that the zones (and their waves) could be paired as we have been doing. We would find that

the dark fringes above and below the central axis can be located with the general equation
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You can remember this result in the following way. Draw a triangle like the one in figure of
path length difference, but for the full slit width a, and note that the path length difference
between the top and bottom rays equals a sin 6. Thus above equation says:

In a single-slit diffraction experiment, dark fringes are produced where the path length
differences (a sin u) between the top and bottom rays are equal to |, 24, 34, . . ..

This may seem to be wrong because the waves of those two particular rays will be exactly in
phase with each other when their path length difference is an integer number of wavelengths.
However, they each will still be part of a pair of waves that are exactly out of phase with each
other; thus, each wave will be cancelled by some other wave, resulting in darkness. (Two light
waves that are exactly out of phase will always cancel each other, giving a net wave of zero,
even if they happen to be exactly in phase with other light waves.)

Using a Lens. Above equations are derived for the case of D >> a. However, they also apply
if we place a converging lens between the slit and the viewing screen and then move the screen
in so that it coincides with the focal plane of the lens. The lens ensures that rays which now

reach any point on the screen are exactly parallel (rather than approximately) back at the slit.



