Ampere’s Law

We can find the net electric field due to any distribution of charges by first writing the
differential electric field dE due to a charge element and then summing the contributions of dE
from all the elements. However, if the distribution is complicated, we may have to use a
computer. Recall, however, that if the distribution has planar, cylindrical, or spherical
symmetry, we can apply Gauss’ law to find the net electric field with considerably less effort.
Similarly, we can find the net magnetic field due sto any distribution of currents by first writing
the differential magnetic field dB due to a current-length element and then summing the
contributions of from all the elements. Again we may have to use a computer for a complicated
distribution. However, if the distribution has some symmetry, we may be able to apply
Ampere’s law to find the magnetic field with considerably less effort. This law, which can be
derived from the Biot-Savart law, has traditionally been credited to André-Marie Ampére
(1775-1836), for whom the Sl unit of current is named. However, the law actually was
advanced by English physicist James Clerk Maxwell. Ampere’s law is

({3 B-ds = Bolene  (Ampere’slaw).

The loop on the integral sign means that the scalar (dot) product B.ds is to be integrated around
a closed loop, called an Amperian loop. The current ienc iS the net current encircled by that
closed loop. To see the meaning of the scalar product B.ds and its integral, let us first apply
Ampere’s law to the general situation of Fig. The figure shows cross sections of three long
straight wires that carry currents iy, iz, and iz either directly into or directly out of the page. An
arbitrary Amperian loop lying in the plane of the page encircles two of the currents but not the
third. The counter clockwise direction marked on the loop indicates the arbitrarily chosen
direction of integration of above equation.

Only the currents
encircled by the
loop are used in
Ampere’s law.
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To apply Ampere’s law, we mentally divide the loop into differential vector elements

that are everywhere directed along the tangent to the loop in the direction of integration.



Assume that at the location of the element in figure, the net magnetic field due to the three
currents is B. Because the wires are perpendicular to the page, we know that the magnetic field
at ds due to each current is in the plane of figure; thus, their net magnetic field B at ds must
also be in that plane. However, we do not know the orientation of B within the plane. B is
arbitrarily drawn at an angle 6 to the direction of B. The scalar product B.ds on the left side of

above equation is equal to B cos 6 ds. Thus, Ampere’s law can be written as

(b B-ds = (b Bcos fds = pgie..

We can now interpret the scalar product as being the product of a length ds of the Amperian
loop and the field component B cos® ds tangent to the loop. Then we can interpret the
integration as being the summation of all such products around the entire loop.

Signs. When we can actually perform this integration, we do not need to know the direction of
B before integrating. Instead, we arbitrarily assume to be generally in the direction of
integration. Then we use the following curled—straight right-hand rule to assign a plus sign or
a minus sign to each of the currents that make up the net encircled current ienc:

Curl your right hand around the Amperian loop, with the fingers pointing in the direction
of integration. A current through the loop in the general direction of your outstretched
thumb is assigned a plus sign, and a current generally in the opposite direction is assigned

a minus sign.

This is how to assign a
sign to a current used In
Ampere's law.

) Direction of
—la integration

Finally, we solve above equation for the magnitude of B. If B turns out positive, then the
direction we assumed for is correct. If it turns out negative, we neglect the minus sign and

redraw in the opposite direction.



Solenoids

Magnetc field of a solenoid

We now turn our attention to another situation in which Ampere’s law proves useful. It
concerns the magnetic field produced by the current in a long, tightly wound helical coil of
wire. Such a coil is called a solenoid. We assume that the length of the solenoid is much
greater than the diameter.

Figure below shows a section through a portion of a “stretched-out” solenoid. The
solenoid’s magnetic field is the vector sum of the fields produced by the individual turns
(windings) that make up the solenoid. For points very close to a turn, the wire behaves
magnetically almost like a long straight wire, and the lines of B there are almost concentric
circles. Figure suggests that the field tends to cancel between adjacent turns. It also suggests
that, at points inside the solenoid and reasonably far from the wire, B is approximately parallel
to the (central) solenoid axis. In the limiting case of an ideal solenoid, which is infinitely long
and consists of tightly packed (close-packed) turns of square wire, the field inside the coil is

uniform and parallel to the solenoid axis.
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At points above the solenoid, such as P in above figure, the magnetic field set up by the upper
parts of the solenoid turns (these upper turns are marked (.)) is directed to the left (as drawn
near P) and tends to cancel the field set up at P by the lower parts of the turns (these lower
turns are marked (%)), which is directed to the right (not drawn). In the limiting case of an ideal
solenoid, the magnetic field outside the solenoid is zero. Taking the external field to be zero is
an excellent assumption for a real solenoid if its length is much greater than its diameter and if
we consider external points such as point P that are not at either end of the solenoid. The
direction of the magnetic field along the solenoid axis is given by a curled — straight right-hand

rule: Grasp the solenoid with your right hand so that your fingers follow the direction of the



current in the windings; your extended right thumb then points in the direction of the axial
magnetic field.

Figure 29-19 shows the lines of B for a real solenoid. The spacing of these lines in the
central region shows that the field inside the coil is fairly strong and uniform over the cross

section of the coil. The external field, however, is relatively weak.
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Ampere’s Law. Let us now apply Ampere’s law,

(# B-ds = Ty A—
to the ideal solenoid of figure, where is uniform within the solenoid and zero outside it, using
the rectangular Amperian loop abcda. We write as the sum of four integrals, one for each

loop segment:

- . o
#JB-:I'F= ’ B-ds + ’ B-d¥ + l B-ds + ’ B-ds.
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The first integral on the right of above equation is Bh, where

|._.J.l_.

B is the magnitude of the uniform field inside the solenoid d .

]
and h is the (arbitrary) length of the segment from a to b. The L F R R —
second and fourth integrals are zero because for every B — b —

element ds of these segments, B either is perpendicular to ds _}mﬁ:

or is zero, and thus the product is zero. The third integral,

which is taken along a segment that lies outside the solenoid, is zero because B = 0 at all
external points. Thus, for the entire rectangular loop has the value Bh.

Net Current. The net current ienc encircled by the rectangular Amperian loop in figure is not
the same as the current i in the solenoid windings because the windings pass more than once
through this loop. Let n be the number of turns per unit length of the solenoid; then the loop

encloses nh turns and



fene = H(nh).
Ampere’s law then gives us
Bh = pginh

or B = pgin  (ideal solenoid).

Although we derived above equation for an infinitely long ideal solenoid, it holds quite well
for actual solenoids if we apply it only at interior points and well away from the solenoid
ends. Equation is consistent with the experimental fact that the magnetic field magnitude B
within a solenoid does not depend on the diameter or the length of the solenoid and that B is
uniform over the solenoidal cross section. A solenoid thus provides a practical way to set up a
known uniform magnetic field for experimentation, just as a parallel-plate capacitor provides

a practical way to set up a known uniform electric field

Magnetic Field of a Toroid

Figure a shows a toroid, which we may describe as a (hollow) solenoid that has been curved
until its two ends meet, forming a sort of hollow bracelet. What magnetic field B is set up inside
the toroid (inside the hollow of the bracelet)? We can find out from Ampere’s law and the

symmetry of the bracelet. From the symmetry, we see that the lines of B form concentric circles
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inside the toroid, directed as shown in Fig. b. Let us choose a concentric circle of radius r as

an Amperian loop and traverse it in the clockwise direction. Ampere’s law yields

(BY27r) = poNN,



where i is the current in the toroid windings (and is positive for those windings enclosed by the

Amperian loop) and N is the total number of turns. This gives

N 1
B = ol 2 (toroid).
27T r

In contrast to the situation for a solenoid, B is not constant over the cross section of a toroid.
It is easy to show, with Ampere’s law, that B = 0 for points outside an ideal toroid (as
if the toroid were made from an ideal solenoid). The direction of the magnetic field within a
toroid follows from our curled-straight right-hand rule: Grasp the toroid with the fingers of
your right hand curled in the direction of the current in the windings; your extended right thumb

points in the direction of the magnetic field.



