
A Point Charge in an Electric Field 

The electrostatic force F acting on a charged particle located in an external electric field Ē has 

the direction Ē of if the charge q of the particle is positive and has the opposite direction if q is 

negative. 

 

Measuring the Elementary Charge 

Equation F = qĒ played a role in the measurement of the elementary charge e by American 

physicist Robert A. Millikan in 1910–1913. Figure below is a representation of his apparatus. 

When tiny oil drops are sprayed into chamber A, some of them become charged, either 

positively or negatively, in the process. Consider a drop that drifts downward through the small 

hole in plate P1 and into chamber C. Let us assume that this drop has a negative charge q. 

If switch S in Fig. is open as shown, battery B has no electrical effect on chamber C. If the 

switch is closed (the connection between chamber C and the positive terminal of the battery is 

then complete), the battery causes an excess positive charge on conducting plate P1 and an 

excess negative charge on conducting plate P2. The charged plates set up a downward-directed 

electric field in chamber C. According to Eq. F = qĒ this field exerts an electrostatic force on 

any charged drop that happens to be in the chamber and affects its motion. In particular, 

our negatively charged drop will tend to drift upward. By timing the motion of oil drops with 

the switch opened and with it closed and thus determining the effect of the charge q, Millikan 

discovered that the 

 



values of q were always given by 

q = ne, for n = 0, ±1, ±2, ±3, . . . , 

in which e turned out to be the fundamental constant we call the elementary charge, 1.60×10−19 

C. Millikan’s experiment is convincing proof that charge is quantized, and he earned the 1923 

Nobel Prize in physics in part for this work. Modern measurements of the elementary charge 

rely on a variety of interlocking experiments, all more precise than the pioneering experiment 

of Millikan. 

Ink-Jet Printing 

The need for high-quality, high-speed printing has caused a search for an alternative to impact 

printing, such as occurs in a standard typewriter. Building up letters by squirting tiny drops of 

ink at the paper is one such alternative. 

Figure below shows a negatively charged drop moving between two conducting 

deflecting plates, between which a uniform, downward-directed electric field has been set up. 

The drop is deflected upward according to Eq. F = qĒ and then strikes the paper at a position 

that is determined by the magnitudes of and the charge q of the drop. 

In practice, Ē is held constant and the position of the drop is determined by the charge 

q delivered to the drop in the charging unit, through which the drop must pass before entering 

the deflecting system. The charging unit, in turn, is activated by electronic signals that encode 

the material to be printed. 

 

A Dipole in an Electric Field 

We have defined the electric dipole moment of an electric dipole to be a vector that points from 

the negative to the positive end of the dipole. As you will see, the behaviour of a dipole in a 

uniform external electric field Ē can be described completely in terms of the two vectors and 

Ē and p, with no need of any details about the dipole’s structure. 



To examine this behavior, we now consider such an abstract dipole in a unifo rm 

external electric field Ē, as shown in Fig a. We assume that the dipole is a rigid structure that 

consists of two centers of opposite charge, each of magnitude q, separated by a distance d. The 

dipole moment makes an angle θ with field Ē. 

Electrostatic forces act on the charged ends of the dipole. Because the electric field is 

uniform, those forces act in opposite directions (as shown in Fig. a) and with the same 

magnitude F = qE. Thus, because the field is uniform, the net force on the dipole from the field 

is zero and the centre of mass of the dipole does not move. However, the forces on the charged 

ends do produce a net torque τ on the dipole about its center of mass. The center of mass lies 

on the line connecting the charged ends, at some distance x from one end and thus a distance d 

− x from the other end. As τ = rF sin θ, we can write the magnitude of the net torque t as 

 

We can also write the magnitude of t: in terms of the magnitudes of the electric field E and the 

dipole moment p = qd. To do so, we substitute qE for F and p/q for d in above eq., finding that 

the magnitude of τ is 

 

We can generalize this equation to vector form as 

 

Vectors p and Ē are shown in Fig. b. The torque acting on a dipole tends to rotate p: (hence the 

dipole) into the direction of field Ē, thereby reducing θ. In Fig., such rotation is clockwise. We 

can represent a torque τ that gives rise to a clockwise rotation by including a minus sign with 

the magnitude of the torque τ. With that notation, the torque of Fig. is 

 

Potential Energy of an Electric Dipole 

Potential energy can be associated with the orientation of an electric dipole in an electric field. 

The dipole has its least potential energy when it is in its equilibrium orientation, which is when 

its moment p is lined up with the field Ē (then τ = p × Ē = 0. It has greater potential energy in 

all other orientations. Thus the dipole is like a pendulum, which has its least gravitationa l 

potential energy in its equilibrium orientation—at its lowest point. To rotate the dipole or the 

pendulum to any other orientation requires work by some external agent. 



In any situation involving potential energy, we are free to define the zero potential-  

energy configuration in an arbitrary way because only differences in potential energy have 

physical meaning. The expression for the potential energy of an electric dipole in an external 

electric field is simplest if we choose the potential energy to be zero when the angle θ in Fig. 

is 90°.  We then can find the potential energy U of the dipole 

at any other value of θ with (∆U = −W) by calculating the 

work W done by the field on the dipole when the dipole is 

rotated to that value of θ from 90°.With the aid of Eq.  (W = 

∫ τ𝑑𝜃) and above eq., we find that the potential energy U at 

any angle θ is 

 

Evaluating the integral leads to 

 

We can generalize this equation to vector form as 

 

Microwave Cooking 

Food can be warmed and cooked in a microwave oven if the food contains water because water 

molecules are electric dipoles. When you turn on the oven, the microwave source sets up a 

rapidly oscillating electric field Ē within the oven and thus also within the food. From eq. 

 

 we see that any electric field Ē produces a torque on an electric dipole moment p to align with 

p. Because the oven’s Ē oscillates, the water molecules continuously flip-flop in a frustrated 

attempt to align with Ē. 

Energy is transferred from the electric field to the thermal energy of the water (and thus 

of the food) where three water molecules happened to have bonded together to form a group. 

The flip-flop breaks some of the bonds. When the molecules reform the bonds, energy is 

transferred to the random motion of the group and then to the surrounding molecules. Soon, 

the thermal energy of the water is enough to cook the food. 


