Double Slit Interference

Coherence

For the interference pattern to appear on viewing screen, the light waves reaching any point on
the screen must have a phase difference that does not vary in time. The waves passing through
slits are portions of the single light wave that illuminates the slits. Because the phase difference
remains constant, the light from slits is said to be completely coherent.

Sunlight and Fingernails. Direct sunlight is partially coherent; that is, sunlight waves
intercepted at two points have a constant phase difference only if the points are very close. If
you look closely at your fingernail in bright sunlight, you can see a faint interference pattern
called speckle that causes the nail to appear to be covered with specks. You see this effect
because light waves scattering from very close points on the nail are sufficiently coherent to
interfere with one another at your eye. The slits in a double-slit experiment, however, are not
close enough, and in direct sunlight, the light at the slits would be incoherent. To get coherent
light, we would have to send the sunlight through a single slit because that single slit is small,
light that passes through it is coherent. In addition, the smallness of the slit causes the coherent
light to spread via diffraction to illuminate both slits in the double-slit experiment.

Incoherent Sources. If we replace the double slits with two similar but independent
monochromatic light sources, such as two fine incandescent wires, the phase difference
between the waves emitted by the sources varies rapidly and randomly. (This occurs because
the light is emitted by vast numbers of atoms in the wires, acting randomly and independently
for extremely short times—of the order of nanoseconds.) As a result, at any given point on the
viewing screen, the interference between the waves from the two sources varies rapidly and
randomly between fully constructive and fully destructive. The eye (and most common optical
detectors) cannot follow such changes, and no interference pattern can be seen. The fringes
disappear, and the screen is seen as being uniformly illuminated.

Coherent Source. A laser differs from common light sources in that its atoms emit light in a
cooperative manner, thereby making the light coherent. Moreover, the light is almost
monochromatic, is emitted in a thin beam with little spreading, and can be focused to a width
that almost matches the wavelength of the light.

Intensity in Double-Slit Interference

Equations below

d sin # = mA, form=0.1,2,... (maxima— bright fringes).

And



dsin = (m + %H. form =10,1,2,... (minima—dark fringes).

tell us how to locate the maxima and minima of the double-slit interference pattern on screen
C as a function of the angle 6 in that figure. Here we wish to derive an expression for the
intensity | of the fringes as a function of 6. The light leaving the slits is in phase. However, let
us assume that the light waves from the two slits are not in phase when they arrive at point P.
Instead, the electric field components of those waves at point P are not in phase and vary with

time as

E, = E;sin

FE, = Eysin{awt + ).

where v is the angular frequency of the waves and f is the phase constant of wave E>. Note that
the two waves have the same amplitude Eo and a phase difference of ¢. Because that phase
difference does not vary, the waves are coherent. We shall show that these two waves will
combine at P to produce an intensity | given by

I=41,cos? 1,
and that

2nd

sin #.

In above eq., lo is the intensity of the light that arrives on the screen from one slit when the
other slit is temporarily covered. We assume that the slits are so narrow in comparison to the
wavelength that this single-slit intensity is essentially uniform over the region of the screen in
which we wish to examine the fringes.

Above equations, which together tell us how the intensity I of the fringe pattern varies with the
angle 6, necessarily contain information about the location of the maxima and minima. Let us
see if we can extract that information to find equations about those locations.

Maxima. intensity maxima will occur when

'Ec_tr = m, form=10,1,2,....
2md |
2mm = m sin A, form=0,1.2,...
d sin # = mA, form=0,1.2.... (maxima),

which is exactly the expression that we derived earlier for the locations of the maxima.



Minima. The minima in the fringe pattern occur when

'5¢r={m+jljm form=0,1,2,....
dsinf = ({m + IE:"’L form=10,1,2,... (minima),

which is just the expression we derived earlier for the locations of the fringe minima.
Figure below, which is a plot of Eq. | = 4locos?(1/2¢), shows the intensity of double-slit
interference patterns as a function of the phase difference f between the waves at the screen.
The horizontal solid line is lo, the (uniform) intensity on the screen when one of the slits is
covered up. Note in Eq. | = 4locos?(1/2¢) and the graph that the intensity | varies from zero at
the fringe minima to 4lo at the fringe maxima. If the waves from the two sources (slits) were
incoherent, so that no enduring phase relation existed between them, there would be no fringe
pattern and the intensity would have the uniform value 2lo for all points on the screen; the
horizontal dashed line in Fig. below shows this uniform value.

Interference cannot create or destroy energy but merely redistributes it over
the screen. Thus, the average intensity on the screen must be the same 2lo regardless of whether
the sources are coherent. This follows at once from Eq. | = 4locos?(1/24); if we substitute , the

average value of the cosine-squared function, this equation reduces to lavg 2lo.
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We shall combine the electric field components E; and E», given by Egs. E1 = Eosinot

and E2 = Egsin(ot+d), respectively.

In Fig. a, the waves with components E; and E> are represented by phasors of magnitude Eo
that rotate around the origin at angular speed v. The values of E;1 and E; at any time are the
projections of the corresponding phasors on the vertical axis. Figure a shows the phasors and
their projections at an arbitrary time t. Consistent with Eqs. E1 = Egsinot and E2 = Egsin(ot+¢),
the phasor for E: has a rotation angle wt and the phasor for E; has a rotation angle ot + ¢ (it is

phase-shifted ahead of E1). As each phasor rotates, its projection on the vertical axis varies with



time in the same way that the sinusoidal functions of Egs. E1 = Eo¢sinwt and Ez = Eosin(wt+¢)
vary with time.
To combine the field components E; and E> at any point P, we add their phasors vectorially,

as shown in fig. b.

Phasors that represent
waves can be added to
find the net wave.

(b)
The magnitude of the vector sum is the amplitude E of the resultant wave at point P, and that
wave has a certain phase constant . To find the amplitude E in Fig. b, we first note that the
two angles marked P are equal because they are opposite equal-length sides of a triangle. From
the theorem (for triangles) that an exterior angle (here ¢, as shown in Fig. b) is equal to the sum

of the two opposite interior angles (here that sum is  + ), we see that p = 1/2¢. Thus, we have

E=2(E;cos B)

= 2E, cos 5 ¢b.

If we square each side of this relation, we obtain

E?=4E;cos’ 1 ¢

Intensity. we know that the intensity of an electromagnetic wave is proportional to the square
of its amplitude. Therefore, the waves we are combining in Fig. b, whose amplitudes are Eo,
each has an intensity lo that is proportional to , and the resultant wave, with amplitude E, has

an intensity | that is proportional to E2.Thus,



Substituting E? = 4E¢2cos?(1/2¢) into this equation and rearranging then yield which is | =
41oc0s%(1/2¢9),

I = 41, cos? 3 ¢,

which we set out to prove.

This suggests

( phase )_ 27 (path Icnglh)
difference)  , |\ difference /°

So above equation for the phase difference between the two waves arriving at point P

on the screen becomes

2rd

b= sin A,

Combining More Than Two Waves

In a more general case, we might want to find the resultant of more than two sinusoidally

varying waves at a point. Whatever the number of waves is, our general procedure is this:

1. Construct a series of phasors representing the waves to be combined. Draw them end to end,

maintaining the proper phase relations between adjacent phasors.

2. Construct the vector sum of this array. The length of this vector sum gives the amplitude of

the resultant phasor. The angle between the vector sum and the first phasor is the phase of the

resultant with respect to this first phasor. The projection of this vector-sum phasor on the

vertical axis gives the time variation of the resultant wave.



