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the container. The actual volume of the molecules is negligible compared to the total volume
of the gas. The molecules of a given gas are identical and have the same mass (m).

Actual volume
of gas molecules

A gas is made of molecules dispersed
in space in the container.

Figure 10.13
Actual volume of the gas 
molecules is negligible.

Figure 10.14

Collision
with wall

Molecular
collision

Gas molecules are in constant 
motion in all possible directions.

Figure 10.15
Molecules move in straight line and
change direction on collision with 
another molecule or wall of container.

Figure 10.16

(2) Gas molecules are in constant random motion with high velocities. They move in straight
lines with uniform velocity and change direction on collision with other molecules or the
walls of the container. Pool table analogy is shown in Fig.10.17.

Gas molecules can be compared to billiard balls in random motion,
bouncing off each other and off the sides of the pool table.

Figure 10.17
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(3) The distance between the molecules are very large and it is assumed that van der Waals
attractive forces between them do not exist. Thus the gas molecules can move freely,
independent of each other.

(4) All collisions are perfectly elastic. Hence, there is no loss of the kinetic energy of a molecule
during a collision.

(5) The pressure of a gas is caused by the hits recorded by molecules on the walls of the
container.

(6) The average kinetic energy 
21

2
mv  of the gas molecules is directly proportional to absolute

temperature (Kelvin temperature). This implies that the average kinetic energy of molecules
is the same at a given temperature.

How Does an Ideal Gas Differ from Real Gases ?

A gas that confirms to the assumptions of the kinetic theory of gases is called an ideal gas. It
obeys the basic laws strictly under all conditions of temperature and pressure.

The real gases as hydrogen, oxygen, nitrogen etc., are opposed to the assumptions (1), (2) and
(3) stated above. Thus :

(a) The actual volume of molecules in an ideal gas is negligible, while in a real gas it is
appreciable.

(b) There are no attractive forces between molecules in an ideal gas while these exist in a real
gas.

(c) Molecular collisions in an ideal gas are perfectly elastic while it is not so in a real gas.

For the reasons listed above, real gases obey the gas laws under moderate conditions of
temperature and pressure. At very low temperature and very high pressure, the clauses (1), (2) and
(3) of kinetic theory do not hold. Therefore, under these conditions the real gases show considerable
deviations from the ideal gas behaviour.

Starting from the postulates of the kinetic molecular theory of gases we can develop an important
equation. This equation expresses PV of a gas in terms of the number of molecules, molecular mass
and molecular velocity. This equation which we shall name as the Kinetic Gas Equation may be
derived by the following clauses.

Let us consider a certain mass of gas enclosed in a cubic box (Fig. 10.18) at a fixed temperature.
Suppose that :

the length of each side of the box = l cm
the total number of gas molecules = n
the mass of one molecule = m
the velocity of a molecule = v

The kinetic gas equation may be derived by the following steps :

(1) Resolution of  Velocity v of a Single Molecule Along X, Y and Z Axes

According to the kinetic theory, a molecule of a gas can move with velocity v in any direction.
Velocity is a vector quantity and can be resolved into the components vx, vy, vz along the X, Y and Z
axes. These components are related to the velocity v by the following expression.

2 2 2 2
x y zv v v v

Now we can consider the motion of a single molecule moving with the component velocities
independently in each direction.
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(2) The Number of Collisions Per Second on Face A Due to One Molecule

Consider a molecule moving in OX direction between opposite faces A and B. It will strike the
face A with velocity vx and rebound with velocity – vx. To hit the same face again, the molecule must
travel l cm to collide with the opposite face B and then again l cm to return to face A. Therefore,

the time between two collisions of face 
2

v
x

l
A

v
 seconds

the number of collisions per second on face 
2

xv
A

l

X-Axis

B

Vx

Vx
A

1 cm

Resolution of velocity v into 
components ,  and .V V  Vx y z

Figure 10.18
Cubic box showing molecular 
collisions along  axis.X

Figure 10.19

Vz

V

Vx

Vy

(3) The Total Change of Momentum on All Faces of the Box Due to One Molecule Only

Each impact of the molecule on the face A causes a change of momentum (mass × velocity) :

the momentum before the impact = mvx

the momentum after the impact = m (– vx)

the change of momentum = mvx – (– mvx)

= 2 mvx

But the number of collisions per second on face A due to one molecule 
2

xv

l
Therefore, the total change of momentum per second on face A caused by one molecule

2

2
2

x x
x

v m v
m v

l l

The change of momentum on both the opposite faces A and B along X-axis would be double i.e.,
22 /xmv l similarly, the change of momentum along Y-axis and Z-axis will be 22 /ymv l and 22 /zmv l

respectively. Hence, the overall change of momentum per second on all faces of the box will be

22 222 2yx z
mvmv mv

l l l

2 2 22
( )x y z

m
v v v

l

22m v

l
2 2 2 2( )x y zv v v v
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(4)   Total Change of Momentum Due to Impacts of All the Molecules on All Faces of the Box

Suppose there are N molecules in the box each of which is moving with a different velocity v1, v2,
v3, etc. The total change of momentum due to impacts of all the molecules on all faces of the box

2 2 2
1 2 3

2
( ...)

m
v v v

l
Multiplying and dividing by n, we have

2 2 2
1 2 3 ...2 v v vmN

l n
22mN u

l
where u2 is the mean square velocity.

(5)   Calculation of Pressure from Change of Momentum; Derivation of Kinetic Gas Equation

Since force may be defined as the change in momentum per second, we can write
22

Force
mN u

l

But
Total Force

Pressure =
Total Area

2 2

2 3

2 1 1

36

mNu mNu
P

l l l
Since l3 is the volume of the cube, V, we have

21

3

mNu
P

V

or
21

3
P V mNu

This is the fundamental equation of the kinetic molecular theory of gases. It is called the Kinetic
Gas equation. This equation although derived for a cubical vessel, is equally valid for a vessel of any
shape. The available volume in the vessel could well be considered as made up of a large number of
infinitesimally small cubes for each of which the equation holds.

Significance of the term u. As stated in clause (4) u2 is the mean of the squares of the individual

velocities of all the N molecules of the gas. But 2 .u u  Therefore u is called the Root Mean Square

(or RMS) Velocity.

If N be the number of molecules in a given mass of gas,

21

3
P V mNu (Kinetic Gas equation)

22 1

3 2
N mu

2

3
N e

where e is the average kinetic energy of a single molecule.

2 2

3 3
PV Ne E
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or
2

3
PV E ...(1)

where E is the total kinetic energy of all the N molecules. The expression (1) may be called the kinetic
gas equation in terms of kinetic energy.

We know that the General ideal gas equation is

PV = nRT ...(2)

From (1) and (2)

2

3
E nRT ...(3)

For one mole of gas, the kinetic energy of N molecules is,

3

2

RT
E ...(4)

Since the number of gas molecules in one mole of gas in N0 (Avogadro number),

0 0

3

2

E RT
e

N N

or
0

3

2

RT
e

N ...(5)

substituting the values of R, T, N0, in the equation (5), the average kinetic energy of a gas molecule
can be calculated.

Calculate the average kinetic energy of a hydrogen molecule at 0°C.

0

3

2

RT
e

N

Here R = 8.314 × 107 erg K–1 mol–1

T = 273 K ; N0 = 6.02 × 1023

7

23

3 8.314 10 273

2 6.02 10
e –145.66 10 erg

Thus the average kinetic energy of H2 at 0°C is 5.66 × 10–14 erg

Calculate the kinetic energy of two moles of N2 at 27°C. (R = 8.314 JK–1

mol–1)

We know
3

2
E nRT

Here, T = 27 + 273 = 300 K ; n = 2; R = 8.314 JK–1 mol–1

Substituting these values, we have

3

2
E  × 2 × 8.314 × 300 = 7482.6 J

Therefore the kinetic energy of two moles of N2 is 7482.6 J.
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(a)    Boyle’s Law

According to the Kinetic Theory, there is a direct proportionality between absolute temperature
and average kinetic energy of the molecules i.e.,

21

2
mNu T

or
21

2
mNu kT

or
23 1

2 3
mNu kT

or
21 2

3 3
mNu kT

Substituting the above value in the kinetic gas equation 21
,

3
PV mNu we have

2

3
PV kT

The product PV, therefore, will have a constant value at a constant temperature. This is Boyle’s
Law.

(b)   Charles’ Law

As derived above,

2

3
PV kT

or
2

3

k
V T

P
At constant pressure,

V = k' T where
2

3

k
k

P
or V T

That is, at constant pressure, volume of a gas is proportional to Kelvin temperature and this is
Charles’ Law.

(c)    Avogadro’s Law

If equal volume of two gases be considered at the same pressure,

2
1 1 1

1

3
PV m N u ...Kinetic equation as applied to one gas

2
2 2 2

1

3
PV m N u ...Kinetic equation as applied to 2nd gas

2 2
1 1 1 2 2 2

1 1

3 3
m N u m N u ...(1)

When the temperature (T) of both the gases is the same, their mean kinetic energy per molecule
will also be the same.

i.e.,
2 2

1 1 2 2
1 1

3 3
m u m u ...(2)

Dividing (1) by (2), we have
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N1 = N2

Or, under the same conditions of temperature and pressure, equal volumes of the two gases
contain the same number of molecules. This is Avogadro’s Law.

(d)   Graham’s Law of Diffusion

If m1 and m2 are the masses and u1 and u2 the velocities of the molecules of gases 1 and 2, then
at the same pressure and volume

2 2
1 1 1 2 2 2

1 1

3 3
m N u m N u

By Avogadro’s Law N1 = N2

2 2
1 1 2 2m u m u

or

2
1 2

2 1

u m

u m

If M1 and M2 represent the molecular masses of gases 1 and 2,
2

1 2

2 1

u M

u M

1 2

2 1

u M

u M

The rate of diffusion (r) is proportional to the velocity of molecules (u), Therefore,

1 2

2 1

Rate of diffusion of gas 1

Rate of diffusion of gas 2

r M

r M

This is Graham’s Law of Diffusion.

While deriving Kinetic Gas Equation, it was assumed that all molecules in a gas have the same
velocity. But it is not so. When any two molecules collide, one molecule transfers kinetic energy

21
2

( )mv to the other molecule. The velocity of the molecule which gains energy increases and that
of the other decreases. Millions of such molecular collisions are taking place per second. Therefore,
the velocities of molecules are changing constantly. Since the number of molecules is very large, a
fraction of molecules will have the same particular velocity. In this way there is a broad distribution
of velocities over different fractions of molecules. In 1860 James Clark Maxwell calculated the
distribution of velocities from the laws of probability. He derived the following equation for the
distribution of molecular velocities.

2–3/ 2
224

2

MC
c RTdN M

e C dc
N RT

where dNc = number of molecules having velocities between C and (C + dc)

N = total number of molecules

M = molecular mass

T = temperature on absolute scale (K)

The relation stated above is called Maxwell’s law of distribution of velocities. The ratio dnc/n
gives the fraction of the total number of molecules having velocities between C and (C + dc).
Maxwell plotted such fractions against velocity possessed by the molecules. The curves so obtained
illustrate the salient features of Maxwell distribution of velocities.
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Fig. 10.20. Shows the distribution of velocities in nitrogen gas, N2, at 300 K and 600 K. It will be
noticed that :

(1) A very small fraction of molecules has either very low (close to zero) or very high
velocities.

(2) Most intermediate fractions of molecules have velocities close to an average velocity
represented by the peak of the curve. This velocity is called the most probable velocity. It
may be defined as the velocity possessed by the largest fraction of molecules
corresponding to the highest point on the Maxvellian curve.

(3) At higher temperature, the whole curve shifts to the right (dotted curve at 600 K). This
shows that at higher temperature more molecules have higher velocities and fewer
molecules have lower velocities.

Most probable velocity

300 K

600 K

V

Molecular velocity

Distribution of molecular velocities in nitrogen 
gas, N , at 300 K and 600 K.2

Figure 10.20

In our study of kinetic theory we come across three different kinds of molecular velocities :

(1) the Average velocity (V)

(2) the Root Mean Square velocity ( )

(3) the Most Probable velocity (vmn)

Average Velocity

Let there be n molecules of a gas having individual velocities v1, v2, v3 ..... vn. The ordinary
average velocity is the arithmetic mean of the various velocities of the molecules.

1 2 3 ..... nv v v v
v

n
From Maxwell equation it has been established that the average velocity vav is given by the

expression

8RT
v

M
Substituting the values of R, T,  and M in this expression, the average value can be calculated.

Root Mean Square Velocity

If v1, v2, v3 ..... vn are the velocities of n molecules in a gas, 2, the mean of the squares of all the
velocities is
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2 2 2 2
2 1 2 3 ..... nv v v v

n
Taking the root

2 2 2 2
1 2 3 ..... nv v v v

n
 is thus the Root Mean Square velocity or RMS velocity. It is denoted by u.

The value of the RMS of velocity u, at a given temperature can be calculated from the Kinetic
Gas Equation.

21

3
PV mNu ...Kinetic Equation

2 3PV
u

mN
For one mole of gas

PV = RT

Therefore,
2 3RT

u
M

...M is molar mass

3RT
u

M
By substituting the values of R, T and M, the value of u (RMS velocity) can be determined.

RMS velocity is superior to the average velocity considered earlier. With the help of u, the total
Kinetic energy of a gas sample can be calculated.

Most Probable Velocity

As already stated the most probable velocity is possessed by the largest number of molecules
in a gas. According to the calculations made by Maxwell, the most probably velocity, vmp, is given by
the expression.

2
mps

RT
v

M
Substituting the values of R, T and M in this expression, the most probably velocity can be

calculated.

Relation between Average Velocity, RMS Velocity and Most Probable Velocity

We know that the average velocity, v , is given by the expression

8RT
v

M

and
3RT

M

8 8

3 3

v RT M

M RT

= 0.9213

or v =  × 0.9213 ...(1)

That is, Average Velocity = 0.9213 × RMS Velocity

The expression for the most probably velocity, vmp, is
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2
mp

RT
v

M

and
3RT

M

2 2
0.8165

3 3
mpv RT M

M RT

or vmp =  × 0.8165 ...(2)

That is,                                 Most Probable Velocity = 0.8165 × RMS Velocity

RMS can be easily calculated by the application of Kinetic Gas equation. Knowing the value
of RMS, we can find the average velocity and the most probable velocity from expressions (1) and
(2).

The velocities of gas molecules are exceptionally high. Thus velocity of hydrogen molecule is
1,838 metres sec–1. While it may appear impossible to measure so high velocities, these can be easily
calculated from the Kinetic Gas equation. Several cases may arise according to the available data.

While calculating different types of velocities, we can also make use of the following expressions
stated already.

RMS velocity,
3RT

M

Average velocity,
8RT

v
M

Most Probable velocity,
2

mp
RT

v
M

Case 1. Calculation of Molecular Velocity when temperature alone is given

21

3
PV mNu (Kinetic Gas equation)

where N = N0 (Avogadro’s number)

Thus we have,

M = m × N0 = molecular mass of the gas

3 3PV RT
u

M M
( PV = RT for 1 mole)

But R = 8.314 × 107 ergs deg–1 mol–1

= 0.8314 × 108 ergs deg–1 mol–1

83 0.8314 10 T
u

M

=
4 –1T

1.58 10 cm sec
M

where T is Kelvin temperature and M the molar mass.
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Calculate the root mean square velocity of CO2 molecule at 1000°C.

T = 273 + 1000 = 1273 K; M = 44
Applying the equation

u = 1.58 × 104 × 
T

M

we have u = 1.58 × 104 × 
1273

44
u = 84985 cm  sec–1 or 849.85 m  sec–1

Case 2. Calculation of Molecular Velocity when temperature and pressure both are given.

In such cases we make use of the following relation based on Kinetic Gas equation.

3PV
u

M
We know that 1 mole of a gas at STP occupies a volume of 22400 ml (known as molar volume).

But before applying this relation the molar volume is reduced to the given conditions of temperature
and pressure.

Calculate the RMS velocity of chlorine molecules at 12°C and 78 cm pressure.

At STP : At given conditions :

V1 = 22400 ml V2 = ?

T1 = 273 K T2 = 12 + 273 = 285 K

P1 = 76 cm P2 = 78 cm

Applying
1 1 2 2

1 2

P V P V

T T

we have
1 1 2

2
1 2

76 22400 285
22785 ml

273 78

P V T
V

T P

we know that
3PV

u
M

P = hdg = 78 × 13.6 × 981 dynes cm–2

V = 22785 ml;  M = 71

3 78 13.6 981 22785

71
u

u = 31652 cm sec–1  or  316.52 m sec–1

Case 3. Calculation of Molecular Velocity at STP

Here we use the relation
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3PV
u

M
where P = 1 atm = 76 × 13.6 × 981 dynes cm–2

V = 22,400 ml
M = Molar mass of the gas

Calculate the average velocity of nitrogen molecule at STP.

In this example we have,
P = 1 atm = 76 × 13.6 × 981 dynes cm–2

V = 22,400 ml
M = 28

Substituting these values in the equation

3PV
u

M

we have
3 76 13.6 981 22400

28
= 49,330 cm sec–1

  Average velocity = 0.9213 × 49330 cm sec–1

= 45,447 cm sec–1

Case 4.  Calculation of Molecular Velocity when pressure and density are given
In this case we have

3 3
or

PV P
u u

M D

M
D

V
where P is expressed in dynes cm–2 and D in gm ml–1.

Oxygen at 1 atmosphere pressure and 0°C has a density of 1.4290 grams per
litre. Find the RMS velocity of oxygen molecules.

We have P = 1 atm = 76 × 13.6 × 981 dynes cm–2

D = 1.4290 g l–1
1.4290

1000
g ml–1

= 0.001429 g ml–1

Applying
3P

u
D

we get
3 76 13.6 981

0.001429
u –146138 cm sec

Case 5.     Calculation of most probable velocity
In this case we have

41.29 10mp
T

v
M

where T expressed in Kelvin and M to mass.
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Calculate the most probable velocity of nitrogen molecules, N2, at 15°C.

T = 273 + 15 = 288 K

We know that

41.29 10mp
T

v
M

4 288
1.29 10

28

= 4.137 × 104 cm sec–1

In the derivation of Kinetic gas equation we did not take into account collisions between
molecules. The molecules in a gas are constantly colliding with one another. The transport properties
of gases such as diffusion, viscosity and mean free path depend on molecular collisions. We will now
discuss some properties of gases which determine the frequency of collisions.

The Mean Free Path

At a given temperature, a molecule travels in a straight line before collision with another molecule.
The distance travelled by the molecule before collision is termed free path. The free path for a
molecule varies from time to time. The mean distance travelled by a molecule between two successive
collisions is called the Mean Free Path. It is denoted by . If l1, l2, l3 are the free paths for a molecule
of a gas, its free path

1 2 3 ..... nl l l l

n

where n is the number of molecules with which the molecule collides. Evidently, the number of
molecular collisions will be less at a lower pressure or lower density and longer will be the mean free
path. The mean free path is also related with the viscosity of the gas.

Collision

Free path

The mean free path illustrated.

Figure 10.21

The mean free path, , is given by the expression

3

Pd
where P = pressure of the gas

d = density of the gas
= coefficient of viscosity of the gas
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By a determination of the viscosity of the gas, the mean free path can be readily calculated. At
STP, the mean free path for hydrogen is 1.78 × 10–5 cm and for oxygen it is 1.0 × 10–5 cm.

Effect of Temperature and Pressure on Mean Free Path

(a) Temperature

The ideal gas equation for n moles of a gas is

PV = n R T ...(i)

where n is the number of moles given by

0

Number of molecules

Avogadro's Number

N
n

N

Substituting this in equation (i) we get

o

N
PV RT

N

       or
0PNN

V RT
At constant pressure

1
N

T
...(ii)

The mean free path is given by

Distance travelled by the molecule per second

Number of collisions per c.c.

22

v

vN

2

1

2 N ...(iii)

combining equations (ii) and (iii), we get

T

Thus, the mean free path is directly proportional to the absolute temperature.

(b)   Pressure

We know that the pressure of a gas at certain temperature is directly proportional to the number
of molecules per c.c. i.e.

P N

and mean free path is given by

2

1

2 N
Combining these two equations, we get

1

P
Thus, the mean free path of a gas is directly proportional to the pressure of a gas at constant

temperature.
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At 0°C and 1 atmospheric pressure the molecular diameter of a gas is 4Å.
Calculate the mean free path of its molecule.

The mean free path is given by

2

1

2 N
where  is the molecular diameter

and N  is the no. of molecules per c.c.

Here = 4Å = 4 × 10–8 cm.

We know 22400 ml of a gas 0°C and 1 atm. pressure contains 6.02 × 1023 molecules.

No. of molecules per c.c., 
236.02 10

22400
N

= 2.689 × 1019 molecules

Substituting the values, we get

–8 2 19

1

1.414 3.14 (4 10 ) 2.689 10

3

1

1.414 3.14 16 2.689 10

= 0.524 × 10–5 cm

The root mean square velocity of hydrogen at STP is 1.83 × 105 cm sec–1

and its mean free path is 1.78 × 10–5 cm. Calculate the collision number at STP.

Here root mean square velocity

= 1.831 × 105 cm sec–1

We know average velocity v = 0.9213 × RMS velocity

= 0.9213 × 1.831 × 105 cm sec–1

= 1.6869 × 105 cm sec–1

Average velocity
The mean free path =

Collision Number

Average velocity
Collision Number =

Mean free path
5 –1

–5

1.6869 10 cm sec

1.78 10 cm.

= 9.4769 × 109 sec–1

The Collison Diameter

When two gas molecules approach one another, they cannot come closer beyond a certain
distance. The closest distance between the centres of the two molecules taking part in a collision is
called the Collision Diameter. It is denoted by . Whenever the distance between the centres of two
molecules is , a collison occurs.

The collision diameter is obviously related to the mean free path of molecules. The smaller the
collision or molecular diameter, the larger is the mean free path.
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Collision diameter of molecules.

Figure 10.22

The collision diameter can be determined from viscosity measurements. The collision diameter
of hydrogen is 2.74 Å and that of oxygen is 3.61Å.

The Collision Frequency

The collision frequency of a gas is defined as :

the number of molecular collisions taking place per second per unit volume (c.c.) of the gas.

Let a gas contain N  molecules per c.c. From kinetic consideration it has been established that the
number of molecules, n, with which a single molecule will collide per second, is given by the relation

22n v N

where v  = average velocity;  = collision diameter.

If the total number of collisions taking place per second is denoted by Z, we have
22Z v N N
2 22 v N

Since each collision involves two molecules, the number of collision per second per c.c. of the
gas will be Z/2.

Hence the collision frequency
2 22

2

v N

2 2

2

v N

Evidently, the collision frequency of a gas increases with increase in temperature, molecular
size and the number of molecules per c.c.

Effect of Temperature and Pressure on Collision Frequency

(i)  Effect of Temperature

We know collision frequency is given by
2 2

2

v N
Z ...(i)

From this equation it is clear that

Z v

But T

or Z T

Hence collision frequency is directly proportional to the square root of absolute temperature.
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(ii)  Effect of Pressure

From equation (i), we have
2Z N ...(ii)

where N  is the number of molecules per c.c. But we know that the pressure of the gas at a certain
temperature i.e.

P N ...(iii)

combining equation (ii) and (iii) we get
2Z P

Thus the collision frequency is directly proportional to the square of the pressure of the gas.

The Specific heat is defined as the amount of heat required to raise the temperature of one
gram of a substance through 1°C. It may be measured at constant volume or at a constant pressure
and though the difference in the two values is negligible in case of solids and liquids, it is appreciable
in case of gases and a ratio of the two values gives us valuable information about the atomicity of a
gas molecule.

Specific Heat at Constant Volume

It is the amount of heat required to raise the temperature of one gas through 1°C while the
volume is kept constant and the pressure allowed to increase. It is denoted by the symbol Cv. In
Physical Chemistry it is more common, however, to deal with one gram mole of the gas and the heat
required in such case is called Molecular Heat and is represented at constant volume by Cv.

It is possible to calculate its value by making use of the Kinetic theory.

Consider one mole of a gas at the temperature T. Its kinetic energy is 
21
.

2
mnu  From the kinetic

gas equation

21

2
PV mnu

22 1

3 2
mnu RT

or
21 3

( KE)
2 2

mnu RT

If the temperature is raised by 1°C to (T + 1)K kinetic energy becomes 
3

( 1).
2

R T

Increase in kinetic energy 
3 3

( 1) –
2 2

R T RT

3

2
R

If, therefore, it be assumed that the heat supplied to a gas at constant volume is used up entirely in
increasing the kinetic energy of the moving molecules, and consequently increasing the temperature,

the value of Cv should be equal 
3

.
2

R  It is actually so for monoatomic gases and vapours because

such molecules can execute only translatory motion along the three co-ordinate axes. Motion of
monoatomic gas molecules is the simplest and can be resolved into three perpendicular components
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along the co-ordinate axes. Thus the energy of such a molecule can be considered to be composed
of three parts as

2 2 2 21 1 1 1

2 2 2 2x y zmv mv mv mv

The number of square terms involved in determining the total kinetic energy of a molecule is often
referred to as the Degrees of freedom of motion. Such molecules have three degrees of freedom of
motion. According to the principle of equipartition of energy, total energy of the molecule is equally
distributed among all its degrees of freedom. But in the case of diatomic and polyatomic molecules, the
heat supplied may not only increase this kinetic energy of translation of the molecules as a whole but
also cause an increase in the energy in the inside of the molecules which we may call as intramolecular
energy.  This intramolecular energy may be the vibration energy i.e., energy of the atoms executing
vibrations with respect to each other along their line of centres or rotational energy which manifests
itself in the rotation of the molecules about axes perpendicular to the line of centres. There will be
other degrees of freedom for rotational and vibrational modes of motion also. For such cases the heat
needs will be complex and are denoted by ‘x’ – a factor which depends upon vibrational and rotational
degrees of freedom. Vibrational degrees of freedom rapidly increase with the increase in the total
number of atoms in a molecule but the degrees of freedom are two for linear diatomic and three for non-
linear diatomic molecules in case of rotational motion.

Consequently in such cases the molecular heat will be greater than 
3

2
R  by the factor x.

or
3

2vC R x

The value of x varies from gas to gas and is zero for monoatomic molecules.

Specific Heat at Constant Pressure

It may be defined as the amount of heat required to raise the temperature of one gram of gas
through 1°C, the pressure remaining constant while the volume is allowed to increase. It is written as
cp and the Molecular heat in this gas is represented as Cp.

Now, whenever a gas expands it has to do work against external pressure. It means that when a
gas is heated under constant pressure, the heat supplied is utilised in two ways :

(1) in increasing the kinetic energy of the moving molecules and this has already been
shown to be equal to 3/2 R + x cal.

(2) in performing external work done by the expanding gas. The work done by the gas is
equivalent to the product of the pressure and the change in volume. Let this change in
volume be V when the constant pressure is P and the initial volume is V.

For 1 g mole of the gas at temperature T,

PV = RT ...(i)

At temperature (T + 1) K

P (V + V) = R (T + 1) ...(ii)

Subtracting (i) from (ii)

P × V = R

Hence R cal must be added to the value of 
3

2
R cal in order to get the thermal equivalent of the

energy supplied to one gram mole of the gas in the form of heat when its temperature is raised by 1°C.

3 5

2 2pC R R R (for monoatomic molecules)
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For di– and polyatomic molecules, it will be 
3

.
2

R x

Specific Heat Ratio

The ratio of the molecular heats will be the same as the ratio of the specific heats. It is represented
by the symbol .

5
2
3
2

p

v

C R x

C R x

For monoatomic molecules, x = 0
5
2
3
2

5

3
p

v

C R

C R
1.667

For diatomic molecules in most cases, S = R
7
2
5
2

7

5
p

v

C R

C R
1.40

For polyatomic molecules, very often 
3

2
x R

5 3
2 2
3 3
2 2

8

6
p

v

C R R

C R R
1.33

These results are found to be in accord with experimental observations at 15°C given in the
Table that follows and thus specific heat ratio helps us to determine the atomicity of gas molecules.
The theoretical difference between Cp and Cv as calculated above is R and its observed value also
shown in the table below comes out to about 2 calories.

Helium 5.00 3.01 1.99 1.661 1

Argon 4.97 2.98 1.90 1.667 1

Mercury vapour 6.93 4.94 1.99 1.40 2

Nitrogen 6.95 4.96 1.99 1.40 2

Oxygen 6.82 4.83 1.49 1.41 2

Carbon dioxide 8.75 6.71 2.04 1.30 3

Hydrogen sulphide 8.62 6.53 2.09 1.32 3

An ideal gas is one which obeys the gas laws or the gas equation PV = RT at all pressures and
temperatures. However no gas is ideal. Almost all gases show significant deviations from the ideal
behaviour. Thus the gases H2, N2 and CO2 which fail to obey the ideal-gas equation are termed
nonideal or real gases.

Compressibility Factor

The extent to which a real gas departs from the ideal behaviour may be depicted in terms of a new
function called the Compressibility factor, denoted by Z. It is defined as

PV
Z

RT
The deviations from ideality may be shown by a plot of the compressibility factor, Z, against P.
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For an ideal gas, Z = 1 and it is independent of temperature and pressure. The deviations from
ideal behaviour of a real gas will be determined by the value of Z being greater or less than 1. The
difference between unity and the value of the compressibility factor of a gas is a measure of the
degree of nonideality of the gas.

For a real gas, the deviations from ideal behaviour depend on (i) pressure; and temperature. This
will be illustrated by examining the compressibility curves of some gases discussed below with the
variation of pressure and temperature.

Effect of Pressure Variation on Deviations

Fig. 10.23 shows the compressibility factor, Z, plotted against pressure for H2, N2 and CO2 at a
constant temperature.

2.0

1.5

1.0

0.5

0

N2

H2
CO2

Ideal Gas

0 200 400 600 800 1000
P (atm)

Z P versus  plots for H , N  and CO  at 300 K.2 2 2

Figure 10.23

At very low pressure, for all these gases Z is approximately equal to one. This indicates that at
low pressures (upto 10 atm), real gases exhibit nearly ideal behaviour. As the pressure is increased,
H2 shows a continuous increase in Z (from Z = 1). Thus the H2 curve lies above the ideal gas curve at
all pressures.

For N2 and CO2, Z first decreases (Z < 1). It passes through a minimum and then increases
continuously with pressure (Z > 1). For a gas like CO2 the dip in the curve is greatest as it is most
easily liquefied.

Effect of Temperature on Deviations

Fig 10.24 shows plots of Z or PV/RT against P for N2 at different temperatures. It is clear from the
shape of the curves that the deviations from the ideal gas behaviour become less and less with
increase of temperature. At lower temperature, the dip in the curve is large and the slope of the curve
is negative. That is, Z < 1. As the temperature is raised, the dip in the curve decreases. At a certain
temperature, the minimum in the curve vanishes and the curve remains horizontal for an appreciable
range of pressures. At this temperature, PV/RT is almost unity and the Boyle’s law is obeyed. Hence
this temperature for the gas is called Boyle’s temperature. The Boyle temperature of each gas is
characteristic e.g., for N2 it is 332 K.

Conclusions

From the above discussions we conclude that :

(1) At low pressures and fairly high temperatures, real gases show nearly ideal behaviour
and the ideal-gas equation is obeyed.

(2) At low temperatures and sufficiently high pressures, a real gas deviates significantly
from ideality and the ideal-gas equation is no longer valid.
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Figure 10.24

(3) The closer the gas is to the liquefaction point, the larger will be the deviation from the ideal
behaviour.

van der Waals (1873) attributed the deviations of real gases from ideal behaviour to two erroneous
postulates of the kinetic theory. These are :

(1) the molecules in a gas are point masses and possesses no volume.

(2) there are no intermolecular attractions in a gas.

Therefore, the ideal gas equation PV = nRT derived from kinetic theory could not hold for real
gases. van der Waals pointed out that both the pressure (P) and volume (V) factors in the ideal gas
equation needed correction in order to make it applicable to real gases.

Volume Correction

The volume of a gas is the free space in the container in which molecules move about. Volume
V of an ideal gas is the same as the volume of the container. The dot molecules of ideal gas have
zero-volume and the entire space in the container is available for their movement. However, van der
Waals assumed that molecules of a real gas are rigid spherical particles which possess a definite
volume.

Ideal volume = V Volume =  –V  b Excluded volume ( )b

Ideal Gas Real Gas

Volume of a Real gas.
Figure 10.25

V b – 

The volume of a real gas is, therefore, ideal volume minus the volume occupied by gas molecules
(Fig. 10.25). If b is the effective volume of molecules per mole of the gas, the volume in the ideal gas
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equation is corrected as :

(V – b)

For n moles of the gas, the corrected volume is :

(V – nb)

where b is termed the excluded volume which is constant and characteristic for each gas.

2r

Excluded
volume

Excluded volume for a pair of gas molecules.

Figure 10.26

Excluded volume is four times the actual volume of molecules. The excluded volume is not
equal to the actual volume of the gas molecules. In fact, it is four times the actual volume of
molecules and can be calculated as follows.

Let us consider two molecules of radius r colliding with each other (Fig. 10.26). Obviously, they
cannot approach each other closer than a distance (2r) apart. Therefore, the space indicated by the
dotted sphere having radius (2r) will not be available to all other molecules of the gas. In other words
the dotted spherical space is excluded volume per pair of molecules. Thus,

excluded volume for two molecules 34
(2 )

3
r

34
8

3
r

excluded volume per molecule (Ve)
31 4

8
2 3

r

= 4 Vm

where Vm is the actual volume of a single molecule.

Therefore, in general, excluded volume of the gas molecules is four times the actual volume of
molecules.

Pressure Correction

A molecule in the interior of a gas is attracted by other molecules on all sides. These attractive
forces cancel out. But a molecule about to strike the wall of the vessel is attracted by molecules on
one side only. Hence it experiences an inward pull (Fig. 10.27). Therefore, it strikes the wall with

reduced velocity and the actual pressure of the gas, P, will be less than the ideal pressure. If the
actual pressure P, is less than Pideal by a quantity p, we have

                                             P = Pideal – p

or Pideal = P + p
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(a) (b)

Molecular attractions
balancedInward pull

( ) A molecule about to strike the wall has a net inward pull;
( ) A molecule in the interior of gas has balanced attractions.
a
b

Figure 10.27

p is determined by the force of attraction between molecules (A) striking the wall of container and the
molecules (B) pulling them inward. The net force of attraction is, therefore, proportional to the
concentration of (A) type molecules and also of (B) type of molecules. That is,

p CA × CB

or
n n

p
V V

or
2

2

an
p

V
where n is total number of gas molecules in volume V and a is proportionality constant characteristic
of the gas. Thus the pressure P in the ideal gas equation is corrected as :

2

2

an
P

V
for n moles of gas.

Substituting the values of corrected pressure and volume in the ideal gas equation, PV = nRT, we
have

2

2
( – )

an
p V nb nRT

V
This is known as van der Waals equation for n moles of a gas. For 1 mole of a gas (n = 1), van der

Waals equation becomes

–
2

( )
a

p V b RT
V

Constant a and b in van der Waals equation are called van der Waals constants. These constants
are characteristic of each gas.
Determination of a and b

From the expression (1), the value of a is given by the relation
2

2

pV
a

n
If the pressure is expressed in atmospheres and volume in litres,

2 2

2 2

(pressure) (volume) atm litre

mol mol
a
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The striking molecule A is pulled inward by molecules B which 
reduces the velocity of A and causes the decrease of pressure.

Figure 10.28

A B

B

B

Velocity
reduced

Wall

Thus a is expressed in atm litre2 mol–2 units.

Since nb is excluded volume for n moles of gas,

volume litre

mole
b

n

If volume is expressed in litres, b is expressed in litre mol–1 units.

SI units of a and b.  If pressure and volume are taken in SI units, we have

–2 3 2

2 2

(pressure) (volume) (Nm ) (m )

(mol) (mol)
a

= N m4 mol–2

and b = Volume mol–1

= m3 mol–1

The values of (a) and (b) can be determined by knowing the P, V and T of a gaseous system
under two different conditions. Table 10.2 gives values of a and b for some common gases.

Hydrogen 0.245 0.0247 0.0266 0.0266

Oxygen 1.360 0.1378 0.0318 0.0318

Nitrogen 1.390 0.1408 0.0391 0.0391

Chlorine 6.493 0.6577 0.0562 0.0562

Carban dioxide 3.590 0.3637 0.0428 0.0428

Ammonia 4.170 0.4210 0.0371 0.0371

Sulphur dioxide 6.710 0.6780 0.0564 0.0564
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Calculate the pressure exerted by 1.00 mole of methane (CH4) in a 250 mL
container at 300 K using van der Waals equation. What pressure will be predicted by ideal gas
equation ?

a = 2.253 L2 atm mol–2, b = 0.0428 L mol–1; R = 0.0821 L atm mol–1 K.

2

2
( – )

n a
P V nb nRT

V
...van der Waals equation

Dividing by (V – nb) and solving for P
2

2
–

–

nRT n a
P

V nb V
Substituting n = 1, R = 0.0821 L atm mol–1 K–1, V = 0.250 L, T = 300 K and the values of a and b,

we have

2

2

1 0.0821 300 1 2.253
–

0.250 – (1 0.0428) (0.250)
P

= 82.8 atm

The ideal gas equation predicts that

1 0.0821 300

0.250

nRT
P

V
= 98.5 atm

Limitations of van der Waals Equation

van der Waals equation explains satisfactorily the general behaviour of real gases. It is valid
over a wide range of pressures and temperatures. However, it fails to give exact agreement with
experimental data at very high pressures and low temperatures. Dieterici (1899) proposed a
modified van der Waals equation. This is known as Dieterici equation. For one mole of gas, it
may be stated as

P (V – b) = RTe–a/VRT

Here the terms (a) and (b) have the same significance as in van der Waals equation.

Interpretation of Deviations from van der Waals equation

For one mole of gas, van der Waals equation is

2
( – )

a
P V b RT

V
...(1)

or
2

–
a ab

PV RT Pb
V V

...(2)

Now we proceed to interpret the deviations of real gases from ideal behaviour as depicted in
Figs. 10.21 and 10.22.

(a)  At low pressure. When P is small, V will be large. Thus both the terms Pb and ab/V2 in
equation (2) are negligible compared to a/V. Ignoring these,

–
a

PV RT
V

or 1 –
PV a

RT VRT
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or 1 –
a

Z
VRT

Thus at low pressure, the compressibility factor is less than 1. This explains the initial portions
of Z/P curves of N2 and CO2 which lie below the ideal curve. As the pressure is increased, V
decreases and the value of Z increases. Hence the curves show upward trend.

(b)  At high pressures. When P is large, V will be small. Therefore the terms a/V and ab/V2 are
negligible in comparison with Pb. Hence equation (2) is reduced to

PV = RT + Pb

or 1
PV Pb

RT RT

or 1
Pb

Z
RT

Thus at high pressures, Z is greater than 1 and Z/P lies above the ideal gas curve. With the
increase of pressure, the value of Z will be still higher. This accounts for the rising parts of the curves
in Fig. 10.18.

(c)  At extremely low pressures. At extremely low pressures, V becomes very large. Hence all the
terms Pb, a/V and ab/V2 in equation (2) are negligibly small. These could be ignored compared to RT.
Thus equation (2) reduces to

PV = RT

Hence, at low pressures real gases behave ideally.

(d)  At high temperatures. At high temperatures, volume will be large (V T). Hence P will be small.
Then in the equation (2) the term RT predominates the other terms and the equation is reduced to

PV = RT

Thus at extremely high temperatures real gases tend to show ideal behaviour.

However, at low temperatures, both P and V will be small and the net result of Pb, – a/V, and
ab/V2 will be appreciable. Therefore the deviations would be quite prominent.

(e)  Exceptional behaviour of hydrogen. Because of the small mass of H2 molecule, the attractions
between the molecules are negligible. Hence the term ‘a’ is extremely small and the terms a/V and
ab/V2 in equation (2) can be ignored. The equation now becomes

PV = RT + Pb

or 1
PV Pb

RT RT

or 1
Pb

Z
RT

Since Z is always greater than 1, the Z/P curve throughout lies above the ideal curve.

One mole of water vapour is confined to a 20 litre flask at 27°C. Calculate
its pressure using

(a) van der Waal’s equation

(b) Ideal gas equation

Given that a = 5.464 litre2 atm mol–1

b = 0.0305 litre mol–1

R = 0.0821 litre atm. deg–1 mol–1

(a) using van der Waal’s equation
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2

2
( – )

n
P a V nb nRT

V
Here n = 1 mole ; T = 27 + 273 = 300 K

R = 0.0821 litre atm. deg–1 mol–1; a = 5.464 litre2 atm. mol–1 and b = 0.0305 litre mol–1; P = ?
V = 20 litre. Substituting the values, we get

2

2

5.464 1

(20)
P  [20 – 1 × 0.0305] = 1 × 0.0821 × 300

[P + 0.01366] [19.9695] = 24.6

or
24.6

– 0.01366
19.9695

P

= 1.23187 – 0.01366 = 1.21821 atm

(b) using van der Waal’s equation

PV = n RT

or
n

P RT
V

Substituting the values, we get

1
0.0821 300

20
P 1.2315 atm

Two moles of NH3 are enclosed in a five litre flask at 27°C. Calculate the
pressure exerted by the gas assuming that

(i) the gas behaves like an ideal gas.

(ii) the gas behaves like a real gas

Here

n = 2 ; T = 300 K ; V = 5 litres

R = 0.082 atm. litre K–1 mol–1

(i)  when the gas behaves like an ideal gas

PV = n RT  or 
n

P RT
V

Substituting the values

2 0.082 300

5
P 9.84 atm

(ii)  when the gas behaves like a real gas
2

2
( – )

n
P a V nb nRT

V

or
2

2
–

–

n RT an
P

V nb V
Substituting the values we get

2

2

2 0.082 300 4.14 2
–

5 – 2 0.037 5
P

= 9.9879 – 0.667 = 9.3028 atm
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A gas can be liquefied by lowering the temperature and increasing the pressure. At lower
temperature, the gas molecules lose kinetic energy. The slow moving molecules then aggregate due
to attractions between them and are converted into liquid. The same effect is produced by the
increase of pressure. The gas molecules come closer by compression and coalesce to form the liquid.

Andres (1869) studied the P – T conditions of liquefaction of several gases. He established that
for every gas there is a temperature below which the gas can be liquefied but above it the gas defies
liquefaction. This temperature is called  the critical temperature of the gas.

The critical temperature, Tc, of a gas may be defined as that temperature above which it cannot
be liquefied no matter how great the pressure applied.

The critical pressure, Pc , is the minimum pressure required to liquefy the gas at its critical
temperature.

The critical volume, Vc, is the volume occupied by a mole of the gas at the critical temperature
and critical pressure.

Tc, Pc and Vc are collectively called the critical constants of the gas. All real gases have
characteristic critical constants.

Helium 5.3 2.26 57.8
Hydrogen 33.2 12.8 65.0
Nitrogen 126.0 33.5 90.1
Oxygen 154.3 50.1 74.4
Carbon dioxide 304.0 72.9 94.0
Ammonia 405.5 111.5 72.1
Chlorine 407.1 76.1 123.8
Sulphur dioxide 430.3 77.7 122.3

At critical temperature and critical pressure, the gas becomes identical with its liquid and is said
to be in critical state. The smooth merging of the gas with its liquid is referred to as the critical
phenomenon. Andrews demonstrated the critical phenomenon in gases by taking example of carbon
dioxide.

Andrews Isotherms of Carbon Dioxide

The P-V curves of a gas at constant temperature are called
isotherms or isothermals. For an ideal gas PV = nRT and the
product PV is constant if T is fixed. Hence the isotherms would be
rectangular parabolas.

For an ideal gas PV = nRT and the product PV is constant if 
is fixed. Hence the isotherms would be rectangular parabolas.

Andrews plotted the isotherms of carbon dioxide for a series
of temperatures. From Fig. 10.30 can be seen that there are three
types of isotherms viz., those above 31°C, those below 31°C; and
the one at 31°C.

(a)  Isotherms above 31°C. The isotherm at 25°C is a
rectangular hyperbola and approximates to the isotherm of ideal
gas. So are all other isotherms above 31°C. Thus in the region

Volume

Isotherm

T

Isotherm of an ideal 
gas at temperature .T

Figure 10.29


