Subcellular structures secreting protein hormones

We turn our attention now to the very large class of proteins that are synthesized and
sorted in the secretory pathway (Figure-1). Once the ribosomes synthesizing these proteins
become bound to the rough endoplasmic reticulum, the proteins enter or cross the endoplasmic
reticulum (ER)membranecotranslationally — that is, during their synthesis. Soluble proteins in
this class first are localized in the ER lumen and subsequently are sorted to the lumen of other
organelles or are secreted from the cell. Likewise, the integral membrane proteins in this class
initially are inserted into the rough ER membrane during their synthesis; some remain there, but
many eventually become localized to the plasma membrane or membranes of the smooth ER,
Golgi complex, lysosomes, or endosomes. The rough ER is an extensive interconnected series of
flattened sacs, generally lying in layers. When cells are homogenized, the rough ER breaks up
into small closed vesicles, termed rough microsomes, with the same orientation (ribosomes on
the outside) as that found in the intact cell. The simple experiment shows that immediately after
their synthesis secretory proteins are localized in the lumen of ER vesicles, although they have

been synthesized on ribosomes bound to the cytosolic face of the ER membrane.

Many important experiments on the secretory pathway take advantage of cells that are
specialized for the secretion of specific proteins. These cells contain organelles such as the rough
ER and Golgi cisternae in abundance. For example, of the total protein made by hepatocytes (the
principal cells of the liver), about 70 percent consists of proteins, such as albumin and
transferrin, that are secreted into the blood. Likewise, pancreatic acinar cells synthesize several
digestive enzymes that are packaged into zymogen vesicles and secreted into ductules that lead
to the intestine. All cells, however, secrete some proteins. Extracellular matrix proteins such as
collagens, proteoglycans, and fibronectin, for example, constitute about 5 percent of the protein
made by most cultured cells. All eukaryotic cells use essentially the same pathway for synthesis

and sorting of secretory proteins.
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Figure-10verview of sorting of nuclear-encoded proteins in eukaryotic cells

All nuclear-encoded mRNAs are translated on cytosolic ribosomes. Ribosomes synthesizing nascent
proteins in the secretory pathway 1 are directed to the rough endoplasmic reticulum (ER) by an ER signal sequence
2. After translation is completed in the ER, these proteins move via transport vesicles to the Golgi complex from
where they are further sorted to several destinations 4a, 4b, 4c . After synthesis of proteins lacking an ER signal
sequence is completed on free ribosomes 1s, the proteins are released into the cytosol 2. Those with an organelle-
specific uptake-targeting sequence are imported into the mitochondrion 3a, chloroplast 3b, peroxisome 3c, or
nucleus 3d . Mitochondrial and chloroplast proteins typically pass through the outer and inner membranes to enter
the matrix or stromal space, respectively. Some remain there, and some 4aare sorted to other organellar
compartments. Unlike mitochondrial and chloroplast proteins, which are imported in a partially unfolded form, most

peroxisomal proteins cross the peroxisome membrane as fully folded proteins 4b.
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Secretory Proteins Move from the Rough ER Lumen through the Golgi complex and Then
to the Cell Surface.

Most newly made proteins in the ER lumen or membrane are incorporated into small,
~50-nm-diameter transport vesicles. These either fuse with the cis-Golgi or with each other to
form the membrane stacks known as the cis-Golgi reticulum (network). From the cis-Golgi
certain proteins, mainly ER-localized proteins, are retrieved to the ER via a different set of
retrogradetransport vesicles. In the process called cisternal migration, or cisternal progression, a
new cis-Golgi stack with its cargo of luminal protein physically moves from the cis position
(nearest the ER) to the trans position (farthest from the ER), successively becoming first a
medial-Golgi cisterna and then a trans-Golgi cisterna. As this happens, membrane and luminal
proteins are constantly being retrieved from later to earlier Golgi cisternae by small retrograde
transport vesicles. By this process enzymes and other Golgi resident proteins come to be
localized either in the cis- or medial- or trans-Golgi cisternae.Each cis-Golgi cisterna, with its
protein content, physically moves from the cis to the trans face of the Golgi stack (red arrows).
As this cisternal progression occurs, many luminal and membrane proteins undergo
modifications, primarily to attached oligosaccharide chains. Some proteins remain in the trans-
Golgi cisternae, while others move via small vesicles to the cell surface or to lysosomes. In
certain cell types (e.g., nerve cells and pancreatic acinar cells), some soluble proteins are stored
in secretory vesicles and are released only after the cell receives an appropriate neural or
hormonal signal (regulated secretion). In all cells, certain proteins move to the cell surface in
transport vesicles and are secreted continuously (constitutive secretion). Like soluble proteins,
integral membrane proteins move via transport vesicles from the rough ER to the cis-Golgi and
then on to their final destinations. The orientation of a membrane protein, established when it is
inserted into the ER membrane, is retained during all the sorting steps: Some segments always
face the cytosol; others always face the exoplasmic space (i.e., the lumen of the ER, Golgi
cisternae, and vesicles or the cell exterior). Retrograde movement via small transport vesicles
retrieves ER proteins that migrate to the cis-Golgi and returns them to the ER. Similarly, cis- or
medial-Golgi proteins that migrate to a later compartment are retrieved by small retrograde

transport vesicles.
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Figure-2.The secretory pathway of protein synthesis and sorting



Process of Hormones Secretion

In earlier studies it was suggested that the mechanisms of hormone release from glands
containing secretory granules encompassed holocrine and apocrine secretion (1, 2) as well as
other forms of release, for example:

(a) extrusion of intact secretory granules into the cell exterior (3);

(b) release from a "free hormone pool” (3,4);

(c) release by diffusion of hormones out of the granules into the cytoplasm (4, 5); or

(d) release by dissolution of the granule membrane in the cytoplasm (6). The final common path
proposed for the last three mechanisms of release was the diffusion across the plasma membrane
of the hormones from the cytoplasmic sap into the cell exterior. However, in 1957 another
mechanism of secretion was proposed by De Robertis & Vaz Ferreira, which suggested that
secretion was by "reverse pinocytosis"” (exocytosis), a mechanism whereby the membrane of the
secretory granule fuses with the plasmalemma allowing the escape of the content of the granules
to the cell exterior (7).Exocytosis seems to be the most logical process of hormone release. If the
disadvantages of the other forms of release are considered, it is immediately obvious that
exocytosis is the simplest, the most economical, and the most efficient mechanism for releasing
not only hormones but also enzymes and transmitter substances from the exocrine glands and
nerve terminals respectively. If hormones were released from granules into the cytosol they
would diffuse in all directions; large quantities of the hormones would be destroyed by enzymes
present in the cytosol and only a fraction of the hormones would reach the cell exterior.
Furthermore, the hormones in question would have to cross at least two membranes, those of the
granules and that of the cell. Finally, if release were not by exocytosis, since the molecular size
of the hormones which are stored in granules varies from very simple molecules like adrenaline
to more complex ones like somatotropin or adrenocorticotropin, special transport mechanisms
through these membranes, namely, the granule and the plasmalemma, would have to exist.

Ultrastructural observations have suggested that secretory granules originate from the
Golgi apparatus (15, 17, 36-43). The Golgi complex can be viewed as the membrane-bound
compartment of the cell which is believed to be involved in the following functions (44):

(a). The synthesis of certain polysaccharides;
(b). The synthesis or attachment of carbohydrates side chains of glycoproteins (especially the

addition of terminal -sugars such as galactose, fucose, and sialic acid).



(c). The assembling of secretory materials and formation of membrane-bound granules
containing these materials.
(d). The assembling of lysosomes.

According to some investigators (45) the Golgi apparatus is part of the "endomembrane
system™ of the cell. This system is formed by the following components:
Rough endoplasmic reticulum ——  Smooth endoplasmic reticulum——» Golgi apparatus »
secretory granules. The arrows here indicate the direction of the "membrane flow," a term which
has been introduced to describe the process of physical transfer of membranes from one cell
compartment to another (45). This process of membrane transfer may or may not be
accompanied by the concomitant transfer through this endomembrane system of secretory
products, in this particular case, prohormones and hormones. Morphological evidence showing
the packing of secretory products into granules in the stacked Golgi cisternae, especially in the
maturing phase of the Golgi, has been published. This ultra structural evidence has been
collected from studies on all types of secretory cells of the adenohypophysis (15, 17, 36, 37);
and 8 cells of the pancreas (37-40); the adrenal medulla (11, 12); the neurosecretory cells of the
hypothalamus-neurohypophysial system 43); and in many other secretory systems in which
secretory products are packed in vesicles (46).

Mechanisms of release (Energy Requirement and the Possible Role of ATP)

It has been shown that in many secretory tissues the release reaction is an
energydependent process (68-71). Because secretion is blocked by inhibitors of oxidative
phosphorylation and glycolysis (68-71) and because these two processes are important in the
generation of ATP, it is possible that the energy requirement for the secretory process is in the
form of ATP. However, it is not known whether the energy requirement is necessary to maintain
a general cell function or whether it is needed in some of the steps involved in stimulus-secretion
coupling. Although the molecular events involved in the secretory process have not yet been
completely elucidated, much information has been obtained by studying the effects of A TP on
secretory granules isolated from the adrenal medulla. In the presence of MgH, ATP produces
structural changes in the chromaffin granules (72) and there is a simultaneous release of
catecholamines, endogenous ATP, and soluble proteins (73). When ATP acts on chromaffin
granules it is hydrolyzed by enzymes present in granule membranes, and part of the Pi so
liberated is transphosphorylated to granule membranes (74). The effects of ATP on chromaffin



granules can be blocked at either an early (ATP hydrolysis, transphosphorylation) or at a
subsequent (conformational changes) step (75). On the basis of the above and other observations,
Poisner & Trifar6 proposed a hypothetical model for the molecular events involved in exocytosis
(73). In this model the stimulation of the chromaffin cells induces an increase in intracellular
Ca?" (this being due either to increased Ca®* entry or to liberation from intracellular sources).
Then, CaH may form a link between anionic groups (possibly phospholipids) of both granule and
plasma membranes (73). It is known that CaH can cause the aggregation of chromaffin and other
secretory granules (76, 77). Moreover, it has been shown that CaH causes the attachment of
secretory granules of leucocytes to their membranes (78). ATP, which is released from the
plasma membrane upon stimulation (79) and is perhaps also freed from some other places within
the cell, acts on chromaffin granules. During this interaction ATP is hydrolyzed by granule
membrane enzymes; membrane protein and lipid are phosphorylated; and this is followed by the
production of some conformational change (contractile event?) in the granule membrane leading
to the release of soluble granule components. This hypothesis involves Ca2+ as one of the
principal elements in membrane fusion. In connection with this it has been shown that ATP
induces the synthesis of diphosphatidyl inositol in granule membranes (25, 80, 81). This lipid has
great affinity for Ca2+ and, in some membranes, there is a direct correlation between Ca2+
binding and diphosphatidyl inositol content (82). It should be remembered that this hypothesis
has been formulated on the basis of in vitro observations and although it accommodates all that is
known about the release reaction, further work is necessary to see whether this mechanism will
operate during release in vivo.

Recombinant DNATechnology in the Treatment of Diabetes: Insulin Analogs

After more than half a century of treating diabetics with animal insulins, recombinant
DNA technologies and advanced protein chemistry made human insulin preparations available in
the early 1980s.As  the next step, over the last decade,
insulinanalogswereconstructedbychangingthestructureof the native protein with the goal of
improving the therapeutic properties of it, because the pharmacokinetic characteristics of rapid-,
intermediate-, and long-acting preparations of human insulin make it almost impossible to
achieve sustained normoglycemia. The first clinically available insulin analog, lispro, confirmed
the hopes by showing that improved glycemic control can be achieved without an increase in

hypoglycemic  events. Two new insulin  analogs, insulin  glargine and



insulinaspart,haverecentlybeenapprovedforclinicaluseinthe United States, and several other
analogs are being intensively tested. Thus, it appears that a rapid acceleration of basic and
clinical research in this arena will be seen, which will have direct significance to both patients
and their physicians.Theintroductionofnewshort-actinganalogsandthe development of the first
truly long-acting analogs and the developmentofanalogswithincreasedstability,lessvariability,
and perhaps selective action, will help to develop more individualized treatment strategies
targeted to specific patient characteristics and to achieve further improvements in glycemic
control. Data on the currently available and tested analogs, as well as data on those currently
being developed, are reviewed.

Molecular Genetics and Diagnosis of Thyroid Cancer

Thyroid cancer is a common type of endocrine malignancy, and its incidence has been
steadily increasing in many regions of the world. Initiation and progression of thyroid cancer
involves multiple genetic and epigenetic alterations, of which mutations leading to the activation
of the MAPK and PI3K-AKT signaling pathways are crucial. Common mutations found in
thyroid cancer are point mutation of the BRAF and RAS genes as well as RET/PTC and
PAXS8/PPARy chromosomal rearrangements. The mutational mechanisms seem to be linked to
specific etiologic factors. Chromosomal rearrangements have a strong association with exposure
to ionizing radiation and possibly with DNA fragility, whereas point mutations probably arise as
a result of chemical mutagenesis. A potential role of dietary iodine excess in the generation of
BRAF point mutations has also been proposed. Somatic mutations and other molecular
alterations have been recognized as helpful diagnostic and prognostic markers for thyroid cancer
and are beginning to be introduced into clinical practice, to offer a valuable tool for the

management of patients with thyroid nodules.

Molecular Genetics of Neuroendocrine Tumors

Through insights into the molecular genetics of neuroendocrine tumors (NETS), the genes
predisposing to multiple endocrine neoplasia (MEN) syndromes were identified. In MEN1,
tumors occur in the parathyroids, endocrine pancreas, anterior pituitary, adrenal glands and
thymic neuroendocrine tissues. The MEN1 gene encodes a putative growth-suppressor protein,
menin, binding JunD, a transcriptional factor belonging to the AP-1 complex. However, new
partners binding menin remain to be found. The MEN1 gene might be involved in 1-50% of

sporadic NETs. Another critical mechanism involved in NETS is the deregulation of the RET-



signalling pathways by oncogenic point mutations responsible for MEN2 syndromes. MEN2
refers to the inherited forms of medullary thyroid carcinoma. The RET proto-oncogene, a
tyrosine-kinase receptor, is activated by missense mutations occurring either in the extracellular
dimerization domain or intracellular tyrosine kinase catalytic regions. In both cases the receptor
is constitutionally activated in the absence of natural ligands. Endocrine tumors also belong to
the clinical pattern of Recklinghausen (NF1) and von Hippel-Lindau (VHL) diseases. The genes
for both syndromes have been characterized and provide new pathways for endocrine
tumorigenesis related to G-protein physiology (NF1) and transcriptional regulation and/or
endothelial cell proliferation (VHL), respectively. Here, we propose a basic overview of recent

data on genetic events leading a normal endocrine cell towards a fully malignant phenotype.

Diagnosis of Endocrine Disease: Diagnostic approach to TSH-producing Pituitary
Adenoma

Thyrotropin (TSH)-secreting adenomas (TSHomas) are the rarest form of pituitary
adenomas, and most endocrinologists will see few cases in a lifetime, if any. In most cases, the
diagnostic approach is complicated and cases may be referred after being presented as a
syndrome of inappropriate TSH secretion or as a pituitary mass. This review aims to cover the
past, present and possible future diagnostic approaches to TSHomas, including different clinical
presentations, laboratory assessment and imaging advances. The differential diagnoses will be
discussed, as well as possible coexisting disorders. By evaluating the existing reports and
reviews describing this rare condition, this review aims to present a clinically practical
suggestion on the diagnosic workup for TSHomas, Major advances and scientific breakthroughs
in the imaging area in recent years, facilitating diagnosis of TSHomas, support the belief that
future progress within the imaging field will play an important role in providing methods for a

more efficient diagnosis of this rare condition.
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